DPLUS026 British Virgin Islands Seabed Classification Map
Predicted seabed classification map for part of Sir Francis Drake Channel south of Tortola, British Virgin Islands.
Identificatie
Alternatieve titel | VG004003 |
---|---|
Versiedatum | 2015-09-29 |
Type versiedatum | Creatie: Aanmaakdatum of opnamedatum van de dataset. |
Dataset identificator | e40207b8-8739-46b4-9177-03bc430dcd13 |
Inhoud
Contactgegevens dataset(serie)
Organisatie | Centre for Environment Fisheries and Aquaculture Science (CEFAS) |
---|---|
datamanager@cefas.co.uk | |
Rol | Eigenaar: Partij die eigenaar is van de data. |
Trefwoorden
GEMET - INSPIRE themes, version 1.0 | Oceanographic geographical featuresHabitats and biotopes |
---|---|
GEMET - Concepts, version 4.1.3 |
habitat
|
Ruimtelijk schema dataset(serie) | vector: Vector data wordt gebruikt om geografische data te representeren. |
---|
Ruimtelijke resolutie dataset(serie)
Noemer | 3700 |
---|
Taal | Engels |
---|---|
Categorie(ën) |
|
Begrenzing
Omschrijving geografische begrenzing | |||||||||
---|---|---|---|---|---|---|---|---|---|
Omschrijvende rechthoek
|
|||||||||
Identificator geografische begrenzing |
Referentiesysteem
Horizontaal en/of verticaal referentiesysteem
Unieke code | http://www.opengis.net/def/crs/EPSG/0/3857 |
---|
Kwaliteit
Niveau kwaliteitsinformatie | Dataset: Informatie heeft betrekking op de dataset. |
---|
Bewerkingen
Algemene beschrijving herkomst | A new habitat map for the site was produced by analysing and interpreting the available acoustic data and the ground truth data collected by the dedicated survey of North St George's Channel rMCZ. The process is a combination of two approaches, statistical modelling and image analysis. To map substrata and assemblage types across the study site, object-based image analysis (OBIA; Blaschke, 2010) was utilised. The technique was implemented in the software package eCognition v8.8 combined with a predictive modelling approach using the Random Forest2 algorithm (Breiman, 2001) application within eCognition. This consists of a classification model aimed at predicting a target variable (in this case, sediment composition) based on exhaustively sampled auxiliary variables (in this case, the acoustic data). The technique has been used in previous studies to predict sediment type (Li et al., 2011a). Li et al. (2011b) showed that the Random Forest algorithm outperformed a range of other modelling techniques for predicting substrate type (Liaw and Wiener, 2002). More information about methods is available at https://data.cefas.co.uk/view/18174. For publication to EMODnet, SAERI set the shapefile's layer properties to the projection EPSG:3857 then reprojected the resulting layer to EPSG:4326 - WGS 84. SAERI then removed holes smaller than 25 meters squared and processed the attribute table to fit the specified data exchange format. All work was conducted in QGIS v3.28.4. SAERI used the original GUI (e40207b8-8739-46b4-9177-03bc430dcd13) asigned to the dataset by CEFAS as the UUID for the dataset's publication to EMODnet; SAERI created a new GUI (VG004003) for the dataset. |
---|
Conformiteit
Domeinconsistentie
Resultaat
|
Toegangs- en gebruiksbeperkingen
Legale en veiligheidsbeperkingen
Beperkingen van de dataset(serie)
|
|||||||||
Beperkingen van de dataset(serie)
|
Distributie
Distributieformaat | ESRI Shapefile (Version: 1) GML (Version: 3.2.1) | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overdracht
|
Meta-metadata
Metadata identificator (fileIdentifier) | e40207b8-8739-46b4-9177-03bc430dcd13 | ||||||
---|---|---|---|---|---|---|---|
Taal metadatarecord | Engels | ||||||
Karakterset metadatarecord | UTF-8: 8-bit variabele grootte universele karakterset, gebaseerd op ISO/IEC 10646 | ||||||
Hiërarchisch niveau | Dataset: Informatie heeft betrekking op de dataset. | ||||||
Metadata wijzigingsdatum | 2023-10-30T14:38:54.203Z | ||||||
Metadata-auteur
|