

EMODnet High Resolution Seabed
Mapping (HRSM)

EMODnet Phase III

Quantized Mesh Generator for Cesium 3D
visualisation

CONTRACT NUMBER – EASME/EMFF/2015/1.3.1.7/SI2.742125

Call No. EASME/EMFF/2016/005

Date: 12/12/2018

Prepared by: Ricard Campos (CORONIS), Josep Quintana (CORONIS),
and Rafael Garcia (University of Gerona)

“The information and views set out in this report are those of the author(s) and do not necessarily
reflect the official opinion of the EASME or of the Commission. Neither the EASME, nor the
Commission, guarantee the accuracy of the data included in this study. Neither the EASME, the
Commission nor any person acting on the EASME's or on the Commission’s behalf may be held
responsible for the use which may be made of the information contained therein.”

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 1 of 17

Table of Contents
Table of Contents.. 1

Introduction ... 2

Overview .. 4

1.1 Creation of the pyramid of tiles .. 5

1.2 Greedy Insertion ... 6

1.3 Edge-collapse Simplification .. 7

1.4 Point Set Simplification .. 8

1.5 Implementation Details ... 11
1.5.1 Scaled Coordinates ... 11
1.5.2 Parallelization ... 12
1.5.3 Per-zoom Parameter Setting .. 12
1.5.4 Usage in Virtual Globes .. 12

Results .. 13

Conclusions .. 15

References .. 16

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 2 of 17

Introduction
Nowadays rapid grow of information sources allows mapping the surface of the

earth with increasingly finer scales. Computationally-efficient visualization of such

world-scale data, possibly of very large resolution, has been a hot topic in recent

years. In this direction, many standards for web-based rendering of large 2D maps

have been developed recently, and several services, including OpenStreetMaps or

Google Maps, have adopted them to render world-scale imagery. Unfortunately,

a standard for transferring and displaying terrain geometry on the web is still not

fully defined.

EMODnet Bathymetry aimed at updating the visualization of the global DTM to

3D. In order to achieve this goal, we wanted to use web-based visualization

applications. In these applications, huge amounts of data needs to be passed

through the net and the rendering happens on the user side. Thus, it is important

to keep a balance between the amount of data to transfer and the amount of

effort required for rendering it.

Consequently, Level of Detail (LOD) techniques, able to change the complexity of

the displayed data based on the point of view required by the end user, are

desirable in our context. These techniques focus on rendering the part of the world

falling in the user's frustrum with a complexity that adapts to the distance from

the viewer or the projected screen size. Indeed, at increasing distances from a

given point of view, the data will project to less and less pixels on screen and,

consequently, its details will not be visible. Therefore, the complexity of the data

should adapt to the perception of the user given a point of view.

Inspired by the popularity and large adoption of these techniques for 2D image

visualization, we propose to render the terrain using a multiresolution pyramidal

tiled data structure.

After studying the state of the art in web-based 3D visualization libraries, we

concluded that the best option was to use the Cesium library

(https://cesiumjs.org/). Cesium implements a format called quantized-mesh-1.0

[QMSpec], allowing to represent terrains as Triangulated Irregular Networks (TIN),

where the coordinates of its vertices are quantized within the bounding box of the

mesh. Having a TIN instead of a regular grid is a better representation of the data,

as the complexity of the map (i.e., the number and size of triangles) adapts to the

variations of elevations in the scene.

However, there is no free or open-source tool available nowadays that is able to

create tiles in quantized mesh format out of a raster format such as the ones

generated so far in the EMODnet project. Thus, we have implemented this

software ourselves in the following way: given a regularly gridded digital elevation

https://cesiumjs.org/

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 3 of 17

model (DEM), we create a pyramid of different LODs, where each LOD is a

Triangulated Irregular Network (TIN) further subdivided into small regular tiles,

following a structure similar to that of a quadtree subdivision (see Figure 1).

Building this structure from large-scale high-resolution data presents some issues.

If we tackle the problem of creating a given LOD by simplifying the whole terrain,

this is likely to require huge amounts of memory, and thus renders this process

not amenable on commodity hardware. One can think that, since our structure is

tiled, we can try to build the LODs at tile level, which would effectively solve the

memory issues. However, the problem then is to maintain coherence between

tiles. After all, when put together, they should form a single continuous surface.

However, leveraging per-tile simplification with surface continuity is an open

issue.

Therefore, in this project we focused on the insights of creating a multiresolution

pyramidal tile-based data structure for large terrains, where all the processing is

performed at tile level, while making sure the borders of the tile are coincident

within a LOD. The key idea is to restrict the new tiles to be computed to stick to

the borders of already triangulated ones. With this restriction in mind, we show

how different TIN creation methods of the state of the art can be adapted to work

at tile level, making in this way the generation of this data structure for large

terrains amenable to low-end hardware.

Figure 1. Overview of the proposed methodology. We aim at creating a multi-resolution tiled
representation of a terrain as the one shown on the left hand side. Each of the LOD (also
called zooms) is tiled following a regular grid. As shown on the right hand side, each of these
tiles covers a 256x256 footprint of a raster file, and we aim at converting this regular

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 4 of 17

representation into a TIN.

Overview
Since there is no comparison in the literature regarding the performance of

simplification methods when applied to terrain models, we decided to test several

of the methods in the state of the art in order to decide which one would produce

the results that best fit our needs. Therefore, our main objective was to adapt

different TIN creation methods of the state of the art to the problem of creating a

hierarchical pyramid of tiles out of a large scale high resolution regular gridded

terrain.

To avoid having large amounts of data in memory while creating the TIN, we

adapted existing and consolidated simplification algorithms to be able to work on

small chunks of data. More precisely, given a zoom level within the multiresolution

pyramid, we required the algorithms to be able to work at tile level. Since we will

be processing regions of continuous data independently, we need the borders of

the different tiles to coincide. That is, our focus will be put on maintaining the

proper coherence between tiles while restricting simplifications as less as

possible.

Even if performed off-line, the simplification of world-scale terrains should benefit

from parallel processing. Since we operate at tile level, the process is highly

parallelizable. However, as already mentioned, the tiles must coincide at their

vertices. This presents some restrictions on what tiles can be processed in parallel

at a given moment.

In this context, we adapted three popular types of simplification algorithms to our

needs:

 Greedy insertion: it performs coarse-to-fine simplification. This algorithm starts

from a very basic triangulation (for instance, the two triangles resulting from

triangulating the vertices on the bounding box of the terrain in the XY plane). By

keeping track of the points falling within each triangle in the XY plane, the point

inducing the largest error is added to the surface at each iteration, until all the points

are within a user-defined error.

 Edge-collapse simplification: given a gridded terrain or a TIN, it creates an

approximation of it by iteratively applying an edge collapse operation. As its name

suggests, an edge collapse consists in merging the two endpoints of an edge in a

single point. At each iteration, it selects to collapse the edge that would induce least

error.

 Point set simplification: in this case, the input is seen as a point set, without

connectivity. Without the restriction of not having to stick to a mesh, these methods

are easier to implement and more versatile. After simplifying the point sets, the

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 5 of 17

mesh/connectivity needs to be reconstructed somehow (by means of triangulating

the points in the XY projection plane, for instance).

This section will start by reviewing how we create the tile pyramid, regardless of

the simplification method used. Then, we will focus on the specific changes made

to each simplification algorithm to be able to work on our framework (that is, to

be able to maintain border edges as required). Finally, we will comment on

additional issues that are to be taken into account when creating a world-scale

dataset.

1.1 Creation of the pyramid of tiles

We consider as input a regularly gridded digital elevation model H. From this input,

we aim at creating different resolutions or, following the nomenclature of tiled

web maps, zoom levels. Then, within each zoom, we will further divide the mesh

into regular square tiles of a fixed size. The hierarchical tiled structure follows a

quadtree subdivision of the world: starting at the world within one (or two) base

tiles, each of this tile is further subdivided in four tiles in the next zoom level (see

left hand side of Figure 1). Each of these tiles can be indexed within a given zoom

z by its tile coordinates, that is, their coordinates within the x and y position

H(z,x,y).

Creating the described structure for regularly gridded maps is straightforward. In

fact, H can be considered as an image where the elevation value is encoded in each

pixel value. Thus, crafting different resolutions is just a matter of subsampling the

image at the required resolution, and tiling a given zoom just requires cutting the

image following a regular pattern. When applied to visualizing terrain data, it also

requires to triangulate the points in the XY plane so that we can then lift them to

2.5D using the elevation value of each cell. However, it has been proven that

sticking to a regular grid when representing terrain data is far from ideal, as the

resulting meshes are overly complex when compared to the variation of elevation

present in a tile. In our approach we want each of these tiles H(z,x,y) of regularly

gridded data to be represented by a more efficient TIN representation T(z,x,y).

Common wisdom would say that building this multiresolution TIN structure, that

we will refer to as T, can follow an approach similar to that of regular data: instead

of subsampling the mesh at a given level, one only has to take the regular data,

triangulate it in the 2D plane, and simplify the resulting mesh at a given resolution

to finally cut it in square tiles following a regular pattern. The problem comes from

the fact that simplifying a large terrain requires being able to maintain in memory

the whole mesh, and this is unfeasible for world scale large resolution terrains as

the ones we are considering. Note that this problem has been obviated in the

approaches in the state of the art dealing with this same type of structure

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 6 of 17

[Christen11], and this prevents them from being applied on large terrain data. The

examples they provide in those references support this statement, as their detail

and resolution are far from the scale of the terrains we are considering in this

project. Consequently, we want to tackle the problem of terrain simplification at

tile level.

Thus, given a zoom level within the pyramid, we divide H_z in tiles, and then

process each tile separately. Note that, as opposed to what happens when

rendering a tiled image, the borders of neighbouring T(z,x,y) tiles should overlap

to conform a continuous triangle mesh. Since these tiles should stitch together

seamlessly, our main concern is to make the borders at T(z,x,y) coincident with

those of its neighbouring tiles. Thus, the input of all the simplification methods

below will be a triangulation D(z,x,y), constructed using a Delaunay triangulation

of, on the one hand, the border vertices inherited from already built tiles and, for

the remaining area within the footprint of the tile, the regularly gridded data from

the original terrain.

Therefore, in order for a simplification method to be applicable at tile level, it

needs to be able to:

C1: Preserve the square shape of the tile in the XY plane. Surprisingly enough,

most of the state of the art simplification methods do not take into account the

preservation of the border shape. We need the simplification algorithm not to

modify the tile coverage in the XY plane, so as to avoid gaps when they are

visualized together.

C2: When the tile to construct is adjacent to an already constructed tile, we need

to preserve the borders of the tile inherited from the neighbouring tiles.

Unconstrained simplification of neighbouring tiles may result in different vertices

at the borders, which will result in cracks on the surface [Ulrich02].

In the following sections, we will show how we modified several simplification

methods to be able to fulfil the constraints C1 and C2 above.

1.2 Greedy Insertion

There are several variants of greedy insertion for terrains, especially in the early

days [Fowler79,Polis93,Puppo94], but the most widely known and used is the one

described by Garland and Heckbert [Garland95].

The method starts with a very rough triangulation of the data in the XY plane,

which is typically the two triangles resulting of triangulating the four corners of

the tile in the XY plane. Then, for each of the remaining points from the initial

sample we compute the error from this approximation to the points. At each

iteration, we select the point inducing the largest error and insert it in the

triangulation (Delaunay insertion). Given the newly generated triangles, the errors

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 7 of 17

for each of the remaining points are recomputed, and the insertion process is

repeated until all the errors are below a given threshold.

Modifying this method to adapt to the restrictions C1 and C2 is quite simple, as it

only requires directly adding some vertices as part of the initial triangulation. As

in the original reference, the restriction C1 of maintaining the square shape of the

tile is directly imposed by adding the corners of the tile as initial samples. In the

same direction, constraint C2 can be imposed by also adding as initial samples the

vertices at the constrained borders of the mesh.

1.3 Edge-collapse Simplification

Simplification of 3D meshes has been a prolific field of research in the last years.

Despite there are some other methodologies (e.g., vertex simplification), most of

the approaches in the state of the art use edge-collapse operations to

incrementally simplify the surface [Garland97,Lindstrom98]. As its name suggest,

an edge collapse operation consists of changing one of the edges of the mesh to a

single vertex, simplifying like this the mesh.

Basically, an edge collapse method requires to define two main ingredients: (1)

the cost of collapsing an edge and (2) the vertex placement, i.e., how to choose

the position of the vertex that replaces the edge after collapsing. The process

starts by computing the collapsing cost for each edge in the mesh, so that they can

be put in a priority queue. At each step, the edge representing the smallest cost is

collapsed and, consequently, the connectivity of the mesh involving the triangles

incident to the edge or its vertices are updated, and the costs of the edges involved

are re-computed. The process ends at a given termination condition, that usually

is related to the number of primitives.

While some constraints are used in the original methods to maintain the shape of

the borders of a mesh [Lindstrom98], directly applying edge collapse in a tile is

likely to remove the its corner vertices.

To avoid this, we modify the vertex placement operation. Thus, we override the

common vertex placement defined by the algorithm. Given an edge to collapse,

we take into account the following cases:

 If it is incident to a corner vertex, the result of collapsing that edge is always the

corner vertex. This prevents the corners from disappearing of the mesh.

 If it is on a constrained border of the tile, the collapse is not possible. Thus, the cost

of collapsing this edge is set to infinity to avoid the vertex placement from ever

occurring.

 If one of its endpoints is on the border of the tile, the result is always that vertex.

This maintains the borders of the mesh on a straight line in the XY plane. Note that,

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 8 of 17

when both endpoints of the edge are on the border, but this edge is not

constrained, this restriction does not prevent the border from being simplified, it

only restricts the result of the edge collapse to be one of the vertices of the edge,

and thus maintain the square shape of the border of the tile.

While the modifications proposed can be used in virtually any edge collapse

method, we applied them to the memory-less method presented by Lindstrom

and Turk [Lindstrom98]. More specifically, we modified the implementation

available in the CGAL libraries [CGAL-Simplification]. An example of the method

working on a single tile is presented in Figure 2.

Figure 2. Different levels of detail of a tile using the edge collapse method. Notice how the
reduction in complexity adapts the geometry to the variance in the input terrain, and how in
all the cases our modifications preserve the square shape of the tile.

1.4 Point Set Simplification

Several approaches dealing with point sampled surfaces have appeared recently

[Pauly02, Huang09]. These methods assume no known connectivity of the points,

so they are the ones requiring more care to fulfil constraints C1 and C2. Moreover,

as opposed to the previous approaches, sharp creases are prone to vanish when

dealing with point set simplification strategies. This is mainly because most of

these methods assume the sampled surface to be smooth, an assumption that

may not hold true for terrains containing the crests and ridges typical of natural

landscapes.

For both reasons, we treat the simplification of borders and sharp edges

separately. We perform two separate simplifications: polyline simplification of the

borders and sharp edges and point set simplification for the rest of vertices not in

those edges. We understand by polylines a piecewise linear curve defined by a

sequence of points joined by line segments. Since our points are 3D, they are 3D

polylines. In this way, we can apply any point set simplification method without

worrying of losing the square shape of the tile or smoothing out relevant features.

Given our input tile, we start by identifying the polylines to simplify. Given the

base triangulated tile D(z,x,y), we consider as a sharp edges those whose incident

triangles form a dihedral angle larger than a threshold t (fixed to t=60 degrees).

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 9 of 17

After detecting those edges, we trace polylines by joining those edges having

common endpoints, and stopping and creating new ones when more than two

edges converge into the same point. We also impose a minimum number of edges

on the polylines to be considered as such. Since these polylines come from the

original regularly gridded data, they are too complex and need to be simplified.

The most commonly used polyline simplification algorithm is the Douglas-Peucker

algorithm [Douglas73]. However, the method only works on a single polyline,

without having into account that we may have more than a polyline in the terrain.

If we treat each polyline separately, there is a high change that, when simplified,

these polylines intersect (cross) each other. This is not desirable in our case, since

this would mean that different structures in the terrain are changing its topology.

For this reason, we decided to use the method presented in [Dyken09], which

preserves the topological relationships between the polylines simplified in the 2D

plane.

The algorithm works in a coarse-to-fine manner, starting from the original

polylines it iteratively removes a point from one of them. As in all simplification

methods, the selection of which point to remove next is governed by a measure

defining the error of removing a given point. At the beginning, the 2D curves are

input as part of a 2D Constrained Delaunay Triangulation (CDT). At each iteration,

the point with the smallest error is selected as candidate for removal. However,

before removing it, the algorithm checks if its removal would modify the topology

between curves. Since the points are in a CDT, the union of triangles having that

point as vertex is collected. Then, if the segment resulting from removing that

point is contained within that union of triangles, the candidate point can be

removed safely. On the contrary, if the segment intersects the boundary of the

union, its removal would change topology between curves, and therefore is not

possible to remove it. An example of this is shown in Figure 3.

Figure 3. Visual depiction of the restrictions when simplifying more than a polyline. Image
extracted from CGAL’s documentation

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 10 of 17

(https://doc.cgal.org/latest/Polyline_simplification_2/index.html)

The main problem of this curve simplification method is that it is designed for

simplifying 2D curves, but our curves are made up of 3D points. In this sense, we

constructed a hybrid 2D-3D algorithm. That is, the simplification happens in 2D, as

in the original method [Dyken09], but we compute the error measure guiding the

removal ordering in height. Thus, for each candidate point in the curves to simplify,

we compute as error the point-to-segment Euclidean distance in height. Note that,

as in the original method, this point-to-segment distance is computed not only

between the point to eliminate and the resulting segment, but also between all

the points that were already eliminated and that were, at some moment, between

the endpoints of the resulting segment (the reader is referred to the original

reference [Dyken09] for more details on this procedure).

After simplifying the feature and border polylines, we apply a point set

simplification strategy with the remaining vertices of D(z,x,y). Since we already

took care of constraints C1 and C2, we can use the point set simplification method

of our choice without modification. As a proof of concept, in this project we were

able to apply each of the four methods implemented in the CGAL library [CGAL-

PointSetSimplification]:

 Grid: divides the input point set in a regular grid, and selects a representative

point from each cell.

 Random: randomly selects a fraction of the input points.

 Hierarchy: adaptive simplification of the point set through local clusters,

implements the method in [Pauly02].

 Weighted Locally Optimal Projection (WLOP): simplifies and regularizes a

point set using the method in [Huang09]

Finally, in order to mix both contributions -polylines and points- in a single

triangulation, we take advantage of the CDT resulting of the polyline simplification

step. Basically, we insert the 2D projections of the simplified 3D points in the XY

plane into the CDT to get the final triangle mesh. A sample of why we need this

two-steps process is depicted in Figure 4.

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 11 of 17

Figure 4. Point set simplification. We find the original point set on the right. In the middle,
one can see the result of applying a point set simplification to the points directly. You can
observe how the square shape of the tile is corrupted, and how the vertical “cliff” is not
preserved. By using our two-steps method, as visible in the right part of the figure, we
preserve the straight boundaries of the tile, as well as the sharp features present in the
original data.

1.5 Implementation Details

In this section we will provide some implementation details that may not be

obvious from the descriptions in the previous sections and that are key to our

processing.

1.5.1 Scaled Coordinates

To be independent of the coordinate system of the input terrain, we apply the

simplification of a given tile in scaled coordinates. That is, each coordinate is

normalized to [0..1] according to the maximum and minimum of the values within

the tile. This normalization is required because of the huge difference in scales for

coordinates when working, for instance, with a raster dataset in WGS84

coordinate reference system. In this case, having latitude/longitude for X and Y

and height in meters, which have values that are normally orders of magnitude

different, may cause the triangles to degenerate, and specially provide numeric

problems due to the huge difference in scales.

Nonetheless, when applying the point set simplification strategies, the point sets

need to be transformed again. Since point set simplification techniques are

normally designed to be applied on a metric space, the operations do not allow

for a non-uniformly scaled coordinate system. Therefore, in this case, we apply

point set simplification in metric Earth-Centered Earth-Fixed coordinates.

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 12 of 17

1.5.2 Parallelization

Due to the simplification being defined at tile level, parallelizing the processing is

possible at zoom level. Given a zoom level to process, we define a schedule, that

is, a preferred order to process the tiles. While the schedule defines a desired

order, we try to spawn the creation of as many tiles as possible. Therefore, we

keep track of the tiles being processed at each moment, and just spawn the

process of the tiles that are not in the 8-neighborhood of already processing tiles.

For each generated tile, we collect the vertices on its border, and store them in a

temporary cache. When spawning the creation of a new tile, the first we do is

check whether there are borders for the tile inherited from already constructed

ones, and use them to create D(z,x,y). Once the tiles incident to that borders are

created, the information is removed from the cache to save memory. Note that

this cache is only used for speed and that, if a completely memory-less version is

required, one could load all the borders from the tiles already stored on disk.

However, it is worth noticing that parallelizing the process has an impact on the

results. After all, the shape of the borders of the tiles greatly depends on the order

in which we decide to process them. Moreover, by parallelizing the tiling as

described, the results are not deterministic, since the ordering at which tiles are

processed also depends on the processing time required for each tile.

1.5.3 Per-zoom Parameter Setting

Note that each method has its own set of parameters that need to be carefully

tuned. Moreover, the parameters for the algorithm are scale-dependant and, as

such, they should depend on the zoom level of the pyramid.

Consequently, we allow setting the parameters of the simplification per zoom

level separately, allowing the user to input a value for each of the depth levels of

the multiresolution pyramid. This is the most elegant solution for those

parameters that do not depend on the scale of the data, such as the number of

edges in the edge collapse algorithm. However, if a parameter is scale-dependant,

we can take advantage of the quadtree structure ruling the tiling of the pyramid,

so that we can just set the values of the parameters for the root level, and infer

the rest. If we refer to a parameter for a zoom z as 𝑝𝑧, we allow the user to just

set 𝑝0 and then we compute the values for other zooms as 𝑝𝑧 = 𝑝0/2
𝑧, for those

parameters whose scale needs to be lowered at deeper levels, or 𝑝𝑧 = 𝑝02
𝑧, for

those whose scale needs to grow with depth.

1.5.4 Usage in Virtual Globes

In our application, the created terrain will be visualized in a virtual globe. A virtual

glove renders the world in spherical coordinates, so we need to take special care

of the simplifications at the lower zoom levels of the pyramid.

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 13 of 17

At these levels, the curvature of the ellipsoid of the earth is more prominent than

the underlying terrain. However, since we are performing the simplification in

projected space, in the XY plane, simplification at those levels may get to an overly

simplified terrain for those shallow zoom levels. For instance, at zoom 0, the height

data is negligible compared to the extension of the terrain in the XY plane

contained in the tile. Thus, applying any of the simplification methods directly to

the data may result in as few as two triangles covering the whole tile. Obviously,

when using this tile in a spherical view, the shape of the world ellipsoid is

completely lost.

Therefore, at those scales, we impose a minimum complexity. The way in which

we impose it depends on the method we are applying:

 Greedy insertion: we just add a regular grid of samples to the initial samples when

simplifying low depth zooms.

 Edge collapse simplification: we set the shape weighting of the cost function on the

original reference [Lindstrom98] to a non-zero value. This forces the shape of the

triangles to be close to regular.

 Point set simplification: we only impose a maximum size for border edges. Since

point set simplification methods are not prone to oversimplifying the data, no other

change is needed in this case.

Results
In order to provide a qualitative comparison of the behaviour of the methods, we

first present in Figure 5 the results of applying the different TIN creation strategies

applied to the data.

Figure 5. From left to right, top to bottom, we can see the original raster as an image, the
result of triangulating all the samples in the terrain (and the huge number of triangles that
this produces), and then the result of applying the different simplification methods studied in

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 14 of 17

this project (the name of each appears below its corresponding subfigure).

We can observe how the different methods provide different results in terms of

the number of triangles, their shape and their adaptability to the terrain variance.

Both the greedy insertion and edge collapse methods provide meshes whose

triangles are larger in planar areas and smaller in places where the terrain presents

larger variance. For the point set simplification methods, the grid, random and

hierarchy approaches provide vertices that present some regularity. That is, they

are not sticking to any regular grid, but they are not so adaptive to the terrain

variance as in the greedy insertion and the edge collapse method. The only

exception of this is the WLOP algorithm, which presents a more non-uniform

distribution of the vertices of the TIN along the terrain.

However, there are other parameters to take into account when selecting the best

method. On the one hand, the edge collapse method provides nice results, is fast

to compute and presents low memory footprint while processing. However, the

termination condition is based on the complexity of the mesh, not on the

approximation quality. That is, we only impose a desired number of triangles in

the final mesh, but we are not relating this to a measure of the error with respect

to the original data at full resolution. On the other hand, the two steps process

defined for point set simplification algorithms allowed us to use many different

point set simplification methods in the state of the art. However, we can see that

the results obtained are not optimal when compared to the greedy insertion and

edge collapse methods. Finally, the greedy insertion method has a termination

condition that is directly related to the approximation quality: the maximum

height difference with respect to the original raster values.

Given the above mentioned reasons, we decided to render the EMODnet DTM

released in 2018 using the greedy insertion method. Figure 6 shows some

screenshots of the viewer using Cesium running in the web portal.

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 15 of 17

Figure 6. The top image shows an arbitrary slanted view of the EMODnet DTM. In the
middle one, we highlight the tiles that we are actually rendering (L indicates zoom level, and
X Y are the coordinates of the tile within the zoom). Finally, on the bottom image, we show
the triangles forming each tile.

Conclusions
In this deliverable we described a completely viewer-independent manner of
generating a hierarchical LOD structure of regular square tiles. We focused on
creating static data, which is crack-free within a given zoom level, and applied
several methods in the state of the art to tackle the TIN creation problem. After a
review of the properties of each method, we rendered the full global DTM of
EMODnet Bathymetry using the greedy insertion method. The results obtained
can be visualized in the portal (http://portal.emodnet-bathymetry.eu/).

http://portal.emodnet-bathymetry.eu/

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 16 of 17

Finally, we believe that the results in this project may be useful for the community.
For this reason, on the one hand, we published our code in github:
https://github.com/coronis-computing/emodnet_qmgc, along with
documentation and wiki pages providing all the information required to run the
software. Moreover, we are preparing a journal article (to be submitted in the
coming weeks to the ISPRS Journal of Photogrammetry and Remote Sensing)
containing and extending the developments described in this document, as well
as providing quantitative comparisons of the results provided by each method.

References
[CGAl-PointSetSimplification] P. Alliez, S. Giraudot, C. Jamin, F. Lafarge, Q. Mérigot,

J. Meyron,L. Saboret, N. Salman, S. Wu, Point set processing, in: CGAL User and

Reference Manual, 4.13 Edition, CGAL Editorial Board, 2018. URL

https://doc.cgal.org/4.13/Manual/packages.html#PkgPointSetProcessingSummar

y

[CGAL-Simplification] F. Cacciola, Triangulated surface mesh simplication, in: CGAL

User and Reference Manual, 4.13 Edition, CGAL Editorial Board, 2018. URL

https://doc.cgal.org/4.13/Manual/packages.html#PkgSurfaceMeshSimplification

Summary

[Christen11] M. Christen, S. Nebiker, Large Scale Constraint Delaunay

Triangulation for Virtual Globe Rendering, Springer Berlin Heidelberg, Berlin,

Heidelberg, 535 2011, pp. 57-72.

[Dicken09] C. Dyken, M. Daehlen, T. Sevaldrud, Simultaneous curve simplification,

Journal of Geographical Systems 11 (3) (2009) 273-289.

[Douglas73] D. H. Douglas, T. K. Peucker, Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature,

Cartographica: The International Journal for Geographic Information and

Geovisualization 10 (2) (1973) 112-122.

[Fowler79] R. J. Fowler, J. J. Little, Automatic extraction of irregular network digital

terrain models, SIGGRAPH Comput. Graph. 13 (2) (1979) 199-207.

[Garland95] M. Garland, P. S. Heckbert, Fast polygonal approximation of terrains

and height fields, Technical report CMU-CS-95-181, Carnegie Mellon University

(September 1995).

[Garland97] M. Garland, P. S. Heckbert, Surface simplification using quadric error

metrics, in: Proceedings of the 24th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH '97, ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 1997, pp. 209-216.

[Huang09] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or. Consolidation of

unorganized point clouds for surface reconstruction. ACM Transactions on

https://github.com/coronis-computing/emodnet_qmgc
https://doc.cgal.org/4.13/Manual/packages.html#PkgPointSetProcessingSummary
https://doc.cgal.org/4.13/Manual/packages.html#PkgPointSetProcessingSummary
https://doc.cgal.org/4.13/Manual/packages.html#PkgSurfaceMeshSimplificationSummary
https://doc.cgal.org/4.13/Manual/packages.html#PkgSurfaceMeshSimplificationSummary

EMODnet HRSM

Quantized Mesh Generator for Cesium 3D
visualisation

 Page 17 of 17

Graphics, 28:176:1–176:78, 2009.

[Lindstrom98] P. Lindstrom, G. Turk, Fast and memory efficient polygonal

simplification, in: Proceedings of the Conference on Visualization '98, VIS '98, IEEE

Computer Society Press, Los Alamitos, CA, USA, 1998, pp. 279-286.

[Pauly02] Mark Pauly, Markus Gross, and Leif P Kobbelt. Efficient simplification of

point-sampled surfaces. In Proceedings of the conference on Visualization'02,

pages 163–170. IEEE Computer Society, 2002.

[Polis93] M. F. Polis, D. M. McKeown, Issues in iterative tin generation to support

large scale simulations, in: Proceedings of Auto-Carto 11 (Eleventh International

Symposium on Computer-Assisted Cartography), 1993, pp. 267-277.

[Puppo94] E. Puppo, L. Davis, D. D. Menthon, Y. A. Teng, Parallel terrain

triangulation, International Journal of Geographical Information Systems 8 (2)

(1994) 105-128.

[QMSpec] Cesium. Quantized-mesh-1.0 specification.

https://github.com/AnalyticalGraphicsInc/quantized-mesh

[Ulrich02] T. Ulrich, Rendering massive terrains using chunked level of detail

control, SIGGRAPH Course Notes, vol. 3, no. 5, 2002.

https://github.com/AnalyticalGraphicsInc/quantized-mesh

