
 

 
 

EMODnet High Resolution Seabed 
Mapping (HRSM)  

EMODnet Phase III  

 

Quantized Mesh Generator for Cesium 3D 
visualisation 

 

 

 

 

 

 

CONTRACT NUMBER – EASME/EMFF/2015/1.3.1.7/SI2.742125 

Call No. EASME/EMFF/2016/005 

 

 

 

 

 

 

 

Date: 12/12/2018 

Prepared by: Ricard Campos (CORONIS), Josep Quintana (CORONIS), 
and Rafael Garcia (University of Gerona)  
 

“The information and views set out in this report are those of the author(s) and do not necessarily 
reflect the official opinion of the EASME or of the Commission. Neither the EASME, nor the 
Commission, guarantee the accuracy of the data included in this study. Neither the EASME, the 
Commission nor any person acting on the EASME's or on the Commission’s behalf may be held 
responsible for the use which may be made of the information contained therein.” 

 



 

   

EMODnet HRSM 

Quantized Mesh Generator for Cesium 3D 
visualisation  

 

 

  Page 1 of 17 

 

 

Table of Contents 
Table of Contents.............................................................................................................. 1 

Introduction ..................................................................................................................... 2 

Overview .......................................................................................................................... 4 

1.1 Creation of the pyramid of tiles ...................................................................................... 5 

1.2 Greedy Insertion ............................................................................................................... 6 

1.3 Edge-collapse Simplification ............................................................................................ 7 

1.4 Point Set Simplification .................................................................................................... 8 

1.5 Implementation Details ................................................................................................. 11 
1.5.1 Scaled Coordinates ................................................................................................................................. 11 
1.5.2 Parallelization ......................................................................................................................................... 12 
1.5.3 Per-zoom Parameter Setting .................................................................................................................. 12 
1.5.4 Usage in Virtual Globes .......................................................................................................................... 12 

Results ............................................................................................................................ 13 

Conclusions .................................................................................................................... 15 

References ...................................................................................................................... 16 

 

  



 

   

EMODnet HRSM 

Quantized Mesh Generator for Cesium 3D 
visualisation  

 

 

  Page 2 of 17 

 

 

Introduction 
Nowadays rapid grow of information sources allows mapping the surface of the 

earth with increasingly finer scales. Computationally-efficient visualization of such 

world-scale data, possibly of very large resolution, has been a hot topic in recent 

years. In this direction, many standards for web-based rendering of large 2D maps 

have been developed recently, and several services, including OpenStreetMaps or 

Google Maps, have adopted them to render world-scale imagery. Unfortunately, 

a standard for transferring and displaying terrain geometry on the web is still not 

fully defined. 

EMODnet Bathymetry aimed at updating the visualization of the global DTM to 

3D. In order to achieve this goal, we wanted to use web-based visualization 

applications. In these applications, huge amounts of data needs to be passed 

through the net and the rendering happens on the user side. Thus, it is important 

to keep a balance between the amount of data to transfer and the amount of 

effort required for rendering it.  

Consequently, Level of Detail (LOD) techniques, able to change the complexity of 

the displayed data based on the point of view required by the end user, are 

desirable in our context. These techniques focus on rendering the part of the world 

falling in the user's frustrum with a complexity that adapts to the distance from 

the viewer or the projected screen size. Indeed, at increasing distances from a 

given point of view, the data will project to less and less pixels on screen and, 

consequently, its details will not be visible. Therefore, the complexity of the data 

should adapt to the perception of the user given a point of view. 

Inspired by the popularity and large adoption of these techniques for 2D image 

visualization, we propose to render the terrain using a multiresolution pyramidal 

tiled data structure.  

After studying the state of the art in web-based 3D visualization libraries, we 

concluded that the best option was to use the Cesium library 

(https://cesiumjs.org/). Cesium implements a format called quantized-mesh-1.0 

[QMSpec], allowing to represent terrains as Triangulated Irregular Networks (TIN), 

where the coordinates of its vertices are quantized within the bounding box of the 

mesh. Having a TIN instead of a regular grid is a better representation of the data, 

as the complexity of the map (i.e., the number and size of triangles) adapts to the 

variations of elevations in the scene.  

However, there is no free or open-source tool available nowadays that is able to 

create tiles in quantized mesh format out of a raster format such as the ones 

generated so far in the EMODnet project. Thus, we have implemented this 

software ourselves in the following way: given a regularly gridded digital elevation 

https://cesiumjs.org/
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model (DEM), we create a pyramid of different LODs, where each LOD is a 

Triangulated Irregular Network (TIN) further subdivided into small regular tiles, 

following a structure similar to that of a quadtree subdivision (see Figure 1).  

Building this structure from large-scale high-resolution data presents some issues. 

If we tackle the problem of creating a given LOD by simplifying the whole terrain, 

this is likely to require huge amounts of memory, and thus renders this process 

not amenable on commodity hardware. One can think that, since our structure is 

tiled, we can try to build the LODs at tile level, which would effectively solve the 

memory issues. However, the problem then is to maintain coherence between 

tiles. After all, when put together, they should form a single continuous surface. 

However, leveraging per-tile simplification with surface continuity is an open 

issue. 

Therefore, in this project we focused on the insights of creating a multiresolution 

pyramidal tile-based data structure for large terrains, where all the processing is 

performed at tile level, while making sure the borders of the tile are coincident 

within a LOD. The key idea is to restrict the new tiles to be computed to stick to 

the borders of already triangulated ones. With this restriction in mind, we show 

how different TIN creation methods of the state of the art can be adapted to work 

at tile level, making in this way the generation of this data structure for large 

terrains amenable to low-end hardware. 

 

Figure 1. Overview of the proposed methodology. We aim at creating a multi-resolution tiled 
representation of a terrain as the one shown on the left hand side. Each of the LOD (also 
called zooms) is tiled following a regular grid. As shown on the right hand side, each of these 
tiles covers a 256x256 footprint of a raster file, and we aim at converting this regular 
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representation into a TIN. 

Overview 
Since there is no comparison in the literature regarding the performance of 

simplification methods when applied to terrain models, we decided to test several 

of the methods in the state of the art in order to decide which one would produce 

the results that best fit our needs. Therefore, our main objective was to adapt 

different TIN creation methods of the state of the art to the problem of creating a 

hierarchical pyramid of tiles out of a large scale high resolution regular gridded 

terrain.  

To avoid having large amounts of data in memory while creating the TIN, we 

adapted existing and consolidated simplification algorithms to be able to work on 

small chunks of data. More precisely, given a zoom level within the multiresolution 

pyramid, we required the algorithms to be able to work at tile level. Since we will 

be processing regions of continuous data independently, we need the borders of 

the different tiles to coincide. That is, our focus will be put on maintaining the 

proper coherence between tiles while restricting simplifications as less as 

possible. 

Even if performed off-line, the simplification of world-scale terrains should benefit 

from parallel processing. Since we operate at tile level, the process is highly 

parallelizable. However, as already mentioned, the tiles must coincide at their 

vertices. This presents some restrictions on what tiles can be processed in parallel 

at a given moment. 

In this context, we adapted three popular types of simplification algorithms to our 

needs: 

 Greedy insertion: it performs coarse-to-fine simplification. This algorithm starts 

from a very basic triangulation (for instance, the two triangles resulting from 

triangulating the vertices on the bounding box of the terrain in the XY plane). By 

keeping track of the points falling within each triangle in the XY plane, the point 

inducing the largest error is added to the surface at each iteration, until all the points 

are within a user-defined error. 

 Edge-collapse simplification: given a gridded terrain or a TIN, it creates an 

approximation of it by iteratively applying an edge collapse operation. As its name 

suggests, an edge collapse consists in merging the two endpoints of an edge in a 

single point. At each iteration, it selects to collapse the edge that would induce least 

error. 

 Point set simplification: in this case, the input is seen as a point set, without 

connectivity. Without the restriction of not having to stick to a mesh, these methods 

are easier to implement and more versatile. After simplifying the point sets, the 
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mesh/connectivity needs to be reconstructed somehow (by means of triangulating 

the points in the XY projection plane, for instance). 

This section will start by reviewing how we create the tile pyramid, regardless of 

the simplification method used. Then, we will focus on the specific changes made 

to each simplification algorithm to be able to work on our framework (that is, to 

be able to maintain border edges as required). Finally, we will comment on 

additional issues that are to be taken into account when creating a world-scale 

dataset. 

1.1 Creation of the pyramid of tiles 

We consider as input a regularly gridded digital elevation model H. From this input, 

we aim at creating different resolutions or, following the nomenclature of tiled 

web maps, zoom levels. Then, within each zoom, we will further divide the mesh 

into regular square tiles of a fixed size. The hierarchical tiled structure follows a 

quadtree subdivision of the world: starting at the world within one (or two) base 

tiles, each of this tile is further subdivided in four tiles in the next zoom level (see 

left hand side of Figure 1). Each of these tiles can be indexed within a given zoom 

z by its tile coordinates, that is, their coordinates within the x and y position 

H(z,x,y).  

Creating the described structure for regularly gridded maps is straightforward. In 

fact, H can be considered as an image where the elevation value is encoded in each 

pixel value. Thus, crafting different resolutions is just a matter of subsampling the 

image at the required resolution, and tiling a given zoom just requires cutting the 

image following a regular pattern. When applied to visualizing terrain data, it also 

requires to triangulate the points in the XY plane so that we can then lift them to 

2.5D using the elevation value of each cell. However, it has been proven that 

sticking to a regular grid when representing terrain data is far from ideal, as the 

resulting meshes are overly complex when compared to the variation of elevation 

present in a tile. In our approach we want each of these tiles H(z,x,y) of regularly 

gridded data to be represented by a more efficient TIN representation T(z,x,y). 

Common wisdom would say that building this multiresolution TIN structure, that 

we will refer to as T, can follow an approach similar to that of regular data: instead 

of subsampling the mesh at a given level, one only has to take the regular data, 

triangulate it in the 2D plane, and simplify the resulting mesh at a given resolution 

to finally cut it in square tiles following a regular pattern. The problem comes from 

the fact that simplifying a large terrain requires being able to maintain in memory 

the whole mesh, and this is unfeasible for world scale large resolution terrains as 

the ones we are considering. Note that this problem has been obviated in the 

approaches in the state of the art dealing with this same type of structure 
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[Christen11], and this prevents them from being applied on large terrain data. The 

examples they provide in those references support this statement, as their detail 

and resolution are far from the scale of the terrains we are considering in this 

project. Consequently, we want to tackle the problem of terrain simplification at 

tile level. 

Thus, given a zoom level within the pyramid, we divide H_z in tiles, and then 

process each tile separately. Note that, as opposed to what happens when 

rendering a tiled image, the borders of neighbouring T(z,x,y) tiles should overlap 

to conform a continuous triangle mesh. Since these tiles should stitch together 

seamlessly, our main concern is to make the borders at T(z,x,y) coincident with 

those of its neighbouring tiles. Thus, the input of all the simplification methods 

below will be a triangulation D(z,x,y), constructed using a Delaunay triangulation 

of, on the one hand, the border vertices inherited from already built tiles and, for 

the remaining area within the footprint of the tile, the regularly gridded data from 

the original terrain. 

Therefore, in order for a simplification method to be applicable at tile level, it 

needs to be able to: 

C1: Preserve the square shape of the tile in the XY plane. Surprisingly enough, 

most of the state of the art simplification methods do not take into account the 

preservation of the border shape. We need the simplification algorithm not to 

modify the tile coverage in the XY plane, so as to avoid gaps when they are 

visualized together. 

C2: When the tile to construct is adjacent to an already constructed tile, we need 

to preserve the borders of the tile inherited from the neighbouring tiles. 

Unconstrained simplification of neighbouring tiles may result in different vertices 

at the borders, which will result in cracks on the surface [Ulrich02]. 

In the following sections, we will show how we modified several simplification 

methods to be able to fulfil the constraints C1 and C2 above. 

1.2 Greedy Insertion 

There are several variants of greedy insertion for terrains, especially in the early 

days [Fowler79,Polis93,Puppo94], but the most widely known and used is the one 

described by Garland and Heckbert [Garland95]. 

The method starts with a very rough triangulation of the data in the XY plane, 

which is typically the two triangles resulting of triangulating the four corners of 

the tile in the XY plane. Then, for each of the remaining points from the initial 

sample we compute the error from this approximation to the points. At each 

iteration, we select the point inducing the largest error and insert it in the 

triangulation (Delaunay insertion). Given the newly generated triangles, the errors 
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for each of the remaining points are recomputed, and the insertion process is 

repeated until all the errors are below a given threshold. 

Modifying this method to adapt to the restrictions C1 and C2 is quite simple, as it 

only requires directly adding some vertices as part of the initial triangulation. As 

in the original reference, the restriction C1 of maintaining the square shape of the 

tile is directly imposed by adding the corners of the tile as initial samples. In the 

same direction, constraint C2 can be imposed by also adding as initial samples the 

vertices at the constrained borders of the mesh. 

1.3 Edge-collapse Simplification 

 

Simplification of 3D meshes has been a prolific field of research in the last years. 

Despite there are some other methodologies (e.g., vertex simplification), most of 

the approaches in the state of the art use edge-collapse operations to 

incrementally simplify the surface [Garland97,Lindstrom98]. As its name suggest, 

an edge collapse operation consists of changing one of the edges of the mesh to a 

single vertex, simplifying like this the mesh. 

Basically, an edge collapse method requires to define two main ingredients: (1) 

the cost of collapsing an edge and (2) the vertex placement, i.e., how to choose 

the position of the vertex that replaces the edge after collapsing. The process 

starts by computing the collapsing cost for each edge in the mesh, so that they can 

be put in a priority queue. At each step, the edge representing the smallest cost is 

collapsed and, consequently, the connectivity of the mesh involving the triangles 

incident to the edge or its vertices are updated, and the costs of the edges involved 

are re-computed. The process ends at a given termination condition, that usually 

is related to the number of primitives. 

While some constraints are used in the original methods to maintain the shape of 

the borders of a mesh [Lindstrom98], directly applying edge collapse in a tile is 

likely to remove the its corner vertices.  

To avoid this, we modify the vertex placement operation. Thus, we override the 

common vertex placement defined by the algorithm. Given an edge to collapse, 

we take into account the following cases: 

 If it is incident to a corner vertex, the result of collapsing that edge is always the 

corner vertex. This prevents the corners from disappearing of the mesh. 

 If it is on a constrained border of the tile, the collapse is not possible. Thus, the cost 

of collapsing this edge is set to infinity to avoid the vertex placement from ever 

occurring. 

 If one of its endpoints is on the border of the tile, the result is always that vertex. 

This maintains the borders of the mesh on a straight line in the XY plane. Note that, 
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when both endpoints of the edge are on the border, but this edge is not 

constrained, this restriction does not prevent the border from being simplified, it 

only restricts the result of the edge collapse to be one of the vertices of the edge, 

and thus maintain the square shape of the border of the tile. 

While the modifications proposed can be used in virtually any edge collapse 

method, we applied them to the memory-less method presented by Lindstrom 

and Turk [Lindstrom98]. More specifically, we modified the implementation 

available in the CGAL libraries [CGAL-Simplification]. An example of the method 

working on a single tile is presented in Figure 2. 

 

Figure 2. Different levels of detail of a tile using the edge collapse method. Notice how the 
reduction in complexity adapts the geometry to the variance in the input terrain, and how in 
all the cases our modifications preserve the square shape of the tile. 

1.4 Point Set Simplification 

Several approaches dealing with point sampled surfaces have appeared recently 

[Pauly02, Huang09]. These methods assume no known connectivity of the points, 

so they are the ones requiring more care to fulfil constraints C1 and C2. Moreover, 

as opposed to the previous approaches, sharp creases are prone to vanish when 

dealing with point set simplification strategies. This is mainly because most of 

these methods assume the sampled surface to be smooth, an assumption that 

may not hold true for terrains containing the crests and ridges typical of natural 

landscapes.  

For both reasons, we treat the simplification of borders and sharp edges 

separately. We perform two separate simplifications: polyline simplification of the 

borders and sharp edges and point set simplification for the rest of vertices not in 

those edges. We understand by polylines a piecewise linear curve defined by a 

sequence of points joined by line segments. Since our points are 3D, they are 3D 

polylines. In this way, we can apply any point set simplification method without 

worrying of losing the square shape of the tile or smoothing out relevant features.  

Given our input tile, we start by identifying the polylines to simplify. Given the 

base triangulated tile D(z,x,y), we consider as a sharp edges those whose incident 

triangles form a dihedral angle larger than a threshold t (fixed to t=60 degrees). 
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After detecting those edges, we trace polylines by joining those edges having 

common endpoints, and stopping and creating new ones when more than two 

edges converge into the same point. We also impose a minimum number of edges 

on the polylines to be considered as such. Since these polylines come from the 

original regularly gridded data, they are too complex and need to be simplified. 

The most commonly used polyline simplification algorithm is the Douglas-Peucker 

algorithm [Douglas73]. However, the method only works on a single polyline, 

without having into account that we may have more than a polyline in the terrain. 

If we treat each polyline separately, there is a high change that, when simplified, 

these polylines intersect (cross) each other. This is not desirable in our case, since 

this would mean that different structures in the terrain are changing its topology. 

For this reason, we decided to use the method presented in [Dyken09], which 

preserves the topological relationships between the polylines simplified in the 2D 

plane.  

The algorithm works in a coarse-to-fine manner, starting from the original 

polylines it iteratively removes a point from one of them. As in all simplification 

methods, the selection of which point to remove next is governed by a measure 

defining the error of removing a given point. At the beginning, the 2D curves are 

input as part of a 2D Constrained Delaunay Triangulation (CDT). At each iteration, 

the point with the smallest error is selected as candidate for removal. However, 

before removing it, the algorithm checks if its removal would modify the topology 

between curves. Since the points are in a CDT, the union of triangles having that 

point as vertex is collected. Then, if the segment resulting from removing that 

point is contained within that union of triangles, the candidate point can be 

removed safely. On the contrary, if the segment intersects the boundary of the 

union, its removal would change topology between curves, and therefore is not 

possible to remove it. An example of this is shown in Figure 3. 

 

Figure 3. Visual depiction of the restrictions when simplifying more than a polyline. Image 
extracted from CGAL’s documentation 
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(https://doc.cgal.org/latest/Polyline_simplification_2/index.html) 

The main problem of this curve simplification method is that it is designed for 

simplifying 2D curves, but our curves are made up of 3D points. In this sense, we 

constructed a hybrid 2D-3D algorithm. That is, the simplification happens in 2D, as 

in the original method [Dyken09], but we compute the error measure guiding the 

removal ordering in height. Thus, for each candidate point in the curves to simplify, 

we compute as error the point-to-segment Euclidean distance in height. Note that, 

as in the original method, this point-to-segment distance is computed not only 

between the point to eliminate and the resulting segment, but also between all 

the points that were already eliminated and that were, at some moment, between 

the endpoints of the resulting segment (the reader is referred to the original 

reference [Dyken09] for more details on this procedure). 

After simplifying the feature and border polylines, we apply a point set 

simplification strategy with the remaining vertices of D(z,x,y). Since we already 

took care of constraints C1 and C2, we can use the point set simplification method 

of our choice without modification. As a proof of concept, in this project we were 

able to apply each of the four methods implemented in the CGAL library [CGAL-

PointSetSimplification]: 

 Grid: divides the input point set in a regular grid, and selects a representative 

point from each cell. 

 Random: randomly selects a fraction of the input points. 

 Hierarchy: adaptive simplification of the point set through local clusters, 

implements the method in [Pauly02]. 

 Weighted Locally Optimal Projection (WLOP): simplifies and regularizes a 

point set using the method in [Huang09] 

Finally, in order to mix both contributions -polylines and points- in a single 

triangulation, we take advantage of the CDT resulting of the polyline simplification 

step. Basically, we insert the 2D projections of the simplified 3D points in the XY 

plane into the CDT to get the final triangle mesh. A sample of why we need this 

two-steps process is depicted in Figure 4. 
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Figure 4. Point set simplification. We find the original point set on the right. In the middle, 
one can see the result of applying a point set simplification to the points directly. You can 
observe how the square shape of the tile is corrupted, and how the vertical “cliff” is not 
preserved. By using our two-steps method, as visible in the right part of the figure, we 
preserve the straight boundaries of the tile, as well as the sharp features present in the 
original data. 

1.5 Implementation Details 

In this section we will provide some implementation details that may not be 

obvious from the descriptions in the previous sections and that are key to our 

processing. 

1.5.1 Scaled Coordinates 

To be independent of the coordinate system of the input terrain, we apply the 

simplification of a given tile in scaled coordinates. That is, each coordinate is 

normalized to [0..1] according to the maximum and minimum of the values within 

the tile. This normalization is required because of the huge difference in scales for 

coordinates when working, for instance, with a raster dataset in WGS84 

coordinate reference system. In this case, having latitude/longitude for X and Y 

and height in meters, which have values that are normally orders of magnitude 

different, may cause the triangles to degenerate, and specially provide numeric 

problems due to the huge difference in scales. 

Nonetheless, when applying the point set simplification strategies, the point sets 

need to be transformed again. Since point set simplification techniques are 

normally designed to be applied on a metric space, the operations do not allow 

for a non-uniformly scaled coordinate system. Therefore, in this case, we apply 

point set simplification in metric Earth-Centered Earth-Fixed coordinates. 
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1.5.2 Parallelization 

Due to the simplification being defined at tile level, parallelizing the processing is 

possible at zoom level. Given a zoom level to process, we define a schedule, that 

is, a preferred order to process the tiles. While the schedule defines a desired 

order, we try to spawn the creation of as many tiles as possible. Therefore, we 

keep track of the tiles being processed at each moment, and just spawn the 

process of the tiles that are not in the 8-neighborhood of already processing tiles. 

For each generated tile, we collect the vertices on its border, and store them in a 

temporary cache. When spawning the creation of a new tile, the first we do is 

check whether there are borders for the tile inherited from already constructed 

ones, and use them to create D(z,x,y). Once the tiles incident to that borders are 

created, the information is removed from the cache to save memory. Note that 

this cache is only used for speed and that, if a completely memory-less version is 

required, one could load all the borders from the tiles already stored on disk.  

However, it is worth noticing that parallelizing the process has an impact on the 

results. After all, the shape of the borders of the tiles greatly depends on the order 

in which we decide to process them. Moreover, by parallelizing the tiling as 

described, the results are not deterministic, since the ordering at which tiles are 

processed also depends on the processing time required for each tile. 

1.5.3 Per-zoom Parameter Setting 

Note that each method has its own set of parameters that need to be carefully 

tuned. Moreover, the parameters for the algorithm are scale-dependant and, as 

such, they should depend on the zoom level of the pyramid.  

Consequently, we allow setting the parameters of the simplification per zoom 

level separately, allowing the user to input a value for each of the depth levels of 

the multiresolution pyramid. This is the most elegant solution for those 

parameters that do not depend on the scale of the data, such as the number of 

edges in the edge collapse algorithm. However, if a parameter is scale-dependant, 

we can take advantage of the quadtree structure ruling the tiling of the pyramid, 

so that we can just set the values of the parameters for the root level, and infer 

the rest. If we refer to a parameter for a zoom z as 𝑝𝑧, we allow the user to just 

set  𝑝0 and then we compute the values for other zooms as  𝑝𝑧 = 𝑝0/2
𝑧, for those 

parameters whose scale needs to be lowered at deeper levels, or 𝑝𝑧 = 𝑝02
𝑧, for 

those whose scale needs to grow with depth. 

1.5.4 Usage in Virtual Globes 

In our application, the created terrain will be visualized in a virtual globe. A virtual 

glove renders the world in spherical coordinates, so we need to take special care 

of the simplifications at the lower zoom levels of the pyramid.  
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At these levels, the curvature of the ellipsoid of the earth is more prominent than 

the underlying terrain. However, since we are performing the simplification in 

projected space, in the XY plane, simplification at those levels may get to an overly 

simplified terrain for those shallow zoom levels. For instance, at zoom 0, the height 

data is negligible compared to the extension of the terrain in the XY plane 

contained in the tile. Thus, applying any of the simplification methods directly to 

the data may result in as few as two triangles covering the whole tile. Obviously, 

when using this tile in a spherical view, the shape of the world ellipsoid is 

completely lost. 

Therefore, at those scales, we impose a minimum complexity. The way in which 

we impose it depends on the method we are applying: 

 Greedy insertion: we just add a regular grid of samples to the initial samples when 

simplifying low depth zooms. 

 Edge collapse simplification: we set the shape weighting of the cost function on the 

original reference [Lindstrom98] to a non-zero value. This forces the shape of the 

triangles to be close to regular. 

 Point set simplification: we only impose a maximum size for border edges. Since 

point set simplification methods are not prone to oversimplifying the data, no other 

change is needed in this case. 

Results 
In order to provide a qualitative comparison of the behaviour of the methods, we 

first present in Figure 5 the results of applying the different TIN creation strategies 

applied to the data. 

 

Figure 5. From left to right, top to bottom, we can see the original raster as an image, the 
result of triangulating all the samples in the terrain (and the huge number of triangles that 
this produces), and then the result of applying the different simplification methods studied in 
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this project (the name of each appears below its corresponding subfigure). 

We can observe how the different methods provide different results in terms of 

the number of triangles, their shape and their adaptability to the terrain variance. 

Both the greedy insertion and edge collapse methods provide meshes whose 

triangles are larger in planar areas and smaller in places where the terrain presents 

larger variance. For the point set simplification methods, the grid, random and 

hierarchy approaches provide vertices that present some regularity. That is, they 

are not sticking to any regular grid, but they are not so adaptive to the terrain 

variance as in the greedy insertion and the edge collapse method. The only 

exception of this is the WLOP algorithm, which presents a more non-uniform 

distribution of the vertices of the TIN along the terrain. 

However, there are other parameters to take into account when selecting the best 

method. On the one hand, the edge collapse method provides nice results, is fast 

to compute and presents low memory footprint while processing. However, the 

termination condition is based on the complexity of the mesh, not on the 

approximation quality. That is, we only impose a desired number of triangles in 

the final mesh, but we are not relating this to a measure of the error with respect 

to the original data at full resolution. On the other hand, the two steps process 

defined for point set simplification algorithms allowed us to use many different 

point set simplification methods in the state of the art. However, we can see that 

the results obtained are not optimal when compared to the greedy insertion and 

edge collapse methods. Finally, the greedy insertion method has a termination 

condition that is directly related to the approximation quality: the maximum 

height difference with respect to the original raster values. 

Given the above mentioned reasons, we decided to render the EMODnet DTM 

released in 2018 using the greedy insertion method. Figure 6 shows some 

screenshots of the viewer using Cesium running in the web portal. 
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Figure 6. The top image shows an arbitrary slanted view of the EMODnet DTM. In the 
middle one, we highlight the tiles that we are actually rendering (L indicates zoom level, and 
X Y are the coordinates of the tile within the zoom). Finally, on the bottom image, we show 
the triangles forming each tile. 

 

Conclusions 
In this deliverable we described a completely viewer-independent manner of 
generating a hierarchical LOD structure of regular square tiles. We focused on 
creating static data, which is crack-free within a given zoom level, and applied 
several methods in the state of the art to tackle the TIN creation problem. After a 
review of the properties of each method, we rendered the full global DTM of 
EMODnet Bathymetry using the greedy insertion method. The results obtained 
can be visualized in the portal (http://portal.emodnet-bathymetry.eu/). 

http://portal.emodnet-bathymetry.eu/
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Finally, we believe that the results in this project may be useful for the community. 
For this reason, on the one hand, we published our code in github: 
https://github.com/coronis-computing/emodnet_qmgc, along with 
documentation and wiki pages providing all the information required to run the 
software. Moreover, we are preparing a journal article (to be submitted in the 
coming weeks to the ISPRS Journal of Photogrammetry and Remote Sensing) 
containing and extending the developments described in this document, as well 
as providing quantitative comparisons of the results provided by each method. 
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