
1 

 

 

 

 
 

EMODnet Thematic Lot n°0 –Bathymetry 

–High Resolution Seabed Mapping 

(HRSM2)  
 EASME/EMFF/2017/1.3.1.2/01/SI2.791269 

 

 
WP4: Web Visualization, Terrain Tiling and Interpolation 

Methods 
 

 

Technical report  
 

 

 

 

 

 

 

Date: 28/12/2020 

Prepared by: Ricard Campos and Josep Quintana (Coronis)   
  



2 

 
 

Table of Contents 

Table of Contents .................................................................................................... 2 

1. Introduction ..................................................................................................... 4 

2. Web Visualization and Terrain Tiling ................................................................. 4 

3. Interpolation Methods...................................................................................... 5 

3.1 Radial Basis Functions Interpolation ............................................................................ 6 

3.2 Inpainting Interpolation ............................................................................................. 10 

4. Gridding Artifacts ............................................................................................ 12 

5. Feasibility of Implementing Fledermaus-like Navigation and Terrain 
Exaggeration in Cesium .......................................................................................... 13 

6. References ...................................................................................................... 14 

 

  



3 

“The information and views set out in this report are those of the author(s) and do not necessarily 

reflect the official opinion of the EASME or of the Commission. Neither the EASME, nor the 

Commission, guarantee the accuracy of the data included in this study. Neither the EASME, the 

Commission nor any person acting on the EASME's or on the Commission’s behalf may be held 

responsible for the use which may be made of the information contained therein.” 

  



4 

1. Introduction 

The report describes the activities undertaken by Coronis within the EMODnet HRSM 2 

project.  

2. Web Visualization and Terrain Tiling 

During the EMODnet HRSM 2 project, Coronis has continued the work on converting raster 

DTMs, as the ones generated within this project, into triangulated irregular networks (TINs) 

optimized for web-based visualization. This structure follows a pyramid of TINs representing 

distinct levels of detail (LOD), where each level of detail is composed of small tiles of a fixed 

size, as shown in Figure 1. 

 

 
Figure 1. Overview of the tiling process. 

 

In addition to refactoring code and solving some bugs that were not detected on the first 

version, the contributions to the state of the art developed during the first EMODnet HRSM 

project were published in a high-impact open-access journal: 

 

Campos, R., Quintana, J., Garcia, R., Schmitt, T., Spoelstra, G., & M. A. Schaap, D. (2020). 

3D Simplification Methods and Large Scale Terrain Tiling. Remote Sensing, 12(3). 

Available at: https://www.mdpi.com/2072-4292/12/3/437/htm 

 

Our main contribution described in that article focused on how to create these TINs per tile, 

which allows us to parallelize the processing, while restricting the vertices at the borders of 

each tile to coincide within the same level of detail, so as to create a continuous mesh. In this 

paper we describe the modifications performed to three different TIN creation algorithms 

(greedy insertion, edge-collapse simplification, and point set simplification) to adhere to these 

restrictions, and we compare their results, both qualitatively and quantitatively, using the global 

2018 EMODnet DTM as input. 

 

https://www.mdpi.com/2072-4292/12/3/437/htm
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Finally, we applied the updated code to generate the 3D visualization of the final global DTM 

resulting from this project.  

3. Interpolation Methods 

Coronis also focused on developing interpolation techniques that could help in processing the 

data collected during this project, as an alternative to the solution originally implemented in 

Globe, and that could potentially outperform the results generated by such. 

 

We started by performing a review of the interpolation methods implemented in state-of-the-

art open-source and commercial software solutions, so as to detect the most versatile solution 

that could fit all our needs. More precisely, we reviewed the following solutions:  

● ArcGIS (ESRI) 

● MapInfo Pro Advanced (Pitney Bowes) 

● Maptitude (Caliper) 

● Surfer (Golden Software) 

● QGIS 

● GRASS (Open Source Geospatial Foundation - OSGeo) 

● SAGA GIS 

 

From this review, we identified the following different methods: 

● Nearest Neighbors 

● Delaunay (linear) [Delaunay1934] 

● Natural Neighbors [Sibson1981] 

● Inverse Distance Weighted [Shepard1968] 

● Radial Basis Functions [Fasshauer2007] 

● Kriging [Williams1998] 

● Moving Least Squares [Levin1998] 

 

We performed a review of the theoretical and practical aspects of each method. We 

implemented all of these methods in Matlab in the heightmap interpolation toolbox, and 

released the code publicly with an open-source GPLv3 license at the following link: 

 

https://github.com/coronis-computing/heightmap_interpolation_toolbox 

 

While Matlab is not suitable for performant processing of large scale data, this toolbox was 

developed as a reference implementation of the methods, so that we could test their suitability 

for our needs. 

 

Figure 2 shows a sample of the behaviour of each method on a single sample dataset. 

https://github.com/coronis-computing/heightmap_interpolation_toolbox
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Figure 2. Sample results for all the interpolation methods implemented in the toolbox. 

 

3.1 Radial Basis Functions Interpolation 

After reviewing and testing the interpolation methods listed above, we found the most versatile 

to be the Radial Basis Function (RBF) interpolator. A RBF is a function whose value depends 

only on the distance between the input and some fixed point. The basic idea of a RBF 

interpolator is to construct an interpolant of the data using a summation of several RBF 

centered at the input data points. The formal definition is the following: 

 

 
Where: 

●  is the interpolant evaluated at point . 

●  is a polynomial of small degree evaluated at point x 

●  is the RBF centered at a known data point . 

●  is a scalar weight. 

 

Thus, basically, we have a polynomial (1st term) capturing the main trend of the data, and the 

summation of weighted RBFs (2nd term). Therefore, the unknowns of this interpolant are 

mainly the few terms of the polynomial and the  weight of each RBF. These unknowns can 

be solved using a linear system of equations. In matrix form, this corresponds to: 

 

 
where: 
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While solving this system of equations is simple, it is important to notice that the matrix A is a 

square matrix with side length equal to the number of input data points. Therefore, this 

formulation becomes prohibitively complex for large datasets, as the amount of memory and 

computational resources required for solving and/or evaluating the interpolant is too large.  

 

In order to solve this issue, we use a partition of unity (PU) approach [Wendland2002]. The 

PU consists of computing local RBF in small subdomains, and then blend the local 

contributions together using Compactly-supported RBF as weighting functions: 

 

 
 

Where  is our query domain (i.e., the domain where the interpolant will be valid) and  is 

a RBF interpolant, following the same formulation presented above. Therefore, the idea is to 

first divide the domain into manageable sub-domains where a RBF interpolant can be 

computed. Then, for a given query point, the interpolated value at that position is the result of 

merging the contributions of nearby RBF interpolants. Moreover, the key is to use compactly-

supported RBF to weight the contribution of each subdomain. Since their support is limited, 

this means that at some point the contribution of each subdomain is zero, and can be 

disregarded. Therefore, local RBF interpolants away from the query point do not contribute at 

all to the final interpolation value. This is illustrated in Figure 3. 

 

 
Figure 3. The query domain, delimited with a red line, is covered by a set of overlapping sub 

domains, marked as black circles. The input data points, the blue dots, are contributing to one 

or more subdomain. Since the support of each sub-domain is limited to that of the black circle, 

a query point involves, at most, evaluating four nearby RBF interpolants of very few points. 
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Note that the queries cannot be executed in places not covered by any local RBF domain. 

Original image extracted from [Larsson2017]. 

 

In this way, we generated a global interpolant without requiring to use all the input points at 

once for its construction and evaluation, greatly reducing the computational impact of the 

original RBF formulation. The main issue then is how to define the sub-domains in a general 

way. In densely or regularly sampled datasets as the one shown in Figure 3, using domains 

of a fixed size is a good option. However, for datasets of variable density, finding a single 

domain size that fits all samples is more involved. This is the case for bathymetric datasets as 

the ones used in this project, since the data may come from different sensing modalities with 

variable resolution and/or coverage. For this reason, we define our subdomains using a circle 

covering following a Quadtree decomposition [Samet1984] (Figure 4). 

 

This decomposition follows a tree data structure in which each node represents a square area. 

If a given node does not comply with a defined termination criteria, it is decomposed into four 

sub-nodes by bisecting each side of the parent square, and this process is repeated 

recursively. In our case, the termination criteria requests a node to contain a minimum number 

of points within the domain (so that the local RBF to be computed will be well defined) and a 

minimum cell size (so that the cells are not too small). However, we do not consider only the 

square domain of the quadtree node but a circular domain centered at the node and expanding 

out of the square a given percentage defined by a user parameter. This also ensures overlap 

between subdomains. 

 

 
Figure 4. Quadtree circle covering on a dataset with variable density. We show the original 

quadtree squares and the different circular subdomains derived from them. Note how the 

quadtree decomposition allows defining a coverage where sparse areas are represented by 

larger domains, while denser areas are covered with smaller domains. 

 

Moreover, as also pointed out in Figure 3, and due to the compact support of the local RBF 

interpolants, this type of interpolant is only defined on the areas covered by a subdomain. This 

directly means that we need to cover the desired query domain with at least one subdomain. 

Furthermore, each sub-domain requires covering a given number of data points so that the 

local RBF interpolant computed is meaningful. This is not a problem when interpolating small 

gaps of missing data in a dense dataset, but trying to interpolate large areas of missing data 

in a dataset of varying sampling density such as the one depicted in Figure 5 may not be 
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possible. Indeed, following the decomposition presented above will lead to sub-domains 

without input points, where we cannot compute a valid local interpolant. The only solution, as 

shown in Figure 5, would be to iteratively increase the coverage of empty subdomains until 

they contain a minimum number of points so as to compute a valid RBF interpolant. However, 

this would increase redundancy in those areas, as many local RBF interpolants would 

contribute to the same area, and the advantage of evaluating a small number of local 

interpolants from the PU would be lost.  

 
Figure 5. Using the Quadtree PU and then increasing the subdomains until a minimum 

number of points falls within them leads to redundancy, as many subdomains cover the same 

area with no data, increasing the computational cost of evaluating the interpolant.  

 

To solve this issue, we purge from the quadtree those nodes/subdomains that are redundant 

by following a simple heuristic: if a sub-domain is contained within a domain from a shallower 

node in the tree, we disregard it. An example of the subdomains resulting from this heuristic 

are shown in Figure 6 (c). 

 

 
Figure 6. The input data points with colored elevation values are shown in (a). In (b) we show 

in white all the points we want to interpolate. After using our quadtree decomposition and an 

heuristic to delete redundant sub-domains our decomposition looks as shown in (c). Finally, 

(d) shows the results after applying the interpolation. 

 

Both the pure RBF and the Quadtree PU-RBF interpolants were first implemented in Matlab, 

as part of the heightmap interpolation toolbox, and then ported to Python, to ease their 

implementation within IFREMER’s Globe software. The Python implementation was released 

under LGPLv3 license at: 
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https://github.com/coronis-computing/heightmap_interpolation 

 

While this new technique builds upon concepts used in many research articles on interpolation 

of large datasets, is not specifically following any existing solution on the reviewed related 

softwares, and it provides a new method that is unique to the EMODnet project. 

3.2 Inpainting Interpolation 

The methods reviewed in the previous section define a global interpolant that can be queried 

at an arbitrary point within our domain, and as such they can be used for any use an interpolant 

may be required for. For example changing the resolution of a dataset (superresolution and/or 

simplification), filling holes/missing data regardless of their quantity or continuity, etc. 

 

However, during the first evaluation of the methods implemented in Globe (mid 2020), we 

detected that using a global interpolant may not be the best option in some cases. For 

instance, even if using the more efficient Quadtree PU variant, the computational complexity 

may be too large for filling large gaps, since we need to apply the interpolant to each of the 

query points. In fact, the datasets being processed in Globe already follow some gridding, and 

consequently the interpolant is not queried at an arbitrary point within the domain, but at 

predefined positions following the underlying grid of the dataset.  

 

Therefore, within this project we took advantage of the interpolation happening on a regular 

grid to use image inpainting techniques. Inpainting methods deal with the filling of missing or 

deteriorated parts in an image so as to recover a complete image. Therefore, it is just another 

form of interpolation, and all the methods described above could be used to inpaint an image. 

However, image inpainting techniques also take advantage of the problem taking place on the 

regular lattice of the pixels in an image. Of special interest are those inpainting/interpolation 

methods defined as a solution to a Partial Differential Equation (PDE), because solving a PDE 

on a regular grid reduces to a memory-efficient iterative process using the Finite Differences 

method [Smith1985]. In addition, PDEs easily include additional terms such as stiffness or 

smoothing, which can modify the behaviour of the interpolant (see Figures 7 and 8 for a 

synthetic and a real-world example). 

 

https://github.com/coronis-computing/heightmap_interpolation
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Figure 7. Example of tuning the tension parameter of a Green spline [Wessel2009]. No 

tension results in a smooth biharmonic surface that passes through the input points. As tension 

increases, the interpolant changes more abruptly towards data points, resulting in more peaks 

towards the input data. 

 
Figure 8. Example of varying tension parameter, as in Figure 7, but this time applied to a 

dataset where just a few hundred samples are known in a large hole with no data (white). The 

effect is the same as observed before, when the tension increases, the terrain approaches the 

known data points with more steepness. Data courtesy of the Swedish Maritime 

Administration. 

 

After a revision on the state of the art of inpainting methods for the case of interpolation on 

elevation/bathymetric data, we identified some cases that were worth implementing and 

testing: 

● Sobolev: fills unknown data by minimizing the Sobolev norm of the elevation values in 

the grid. 

● Total Variation (TV), minimizes the total variation norm, formulated as a PDE.  
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● Continuous Curvature Splines in Tension [Smith90], the PDE equivalent of a RBF 

interpolation using Green functions. It allows tuning a tension parameter. When tension 

= 0, it behaves as a biharmonic interpolant, and when the tension = 1, as a harmonic 

interpolant, a value in between is a mix of both. Figure 8 corresponds to this method. 

● Absolutely Minimizing Lipschitz Extension inpainter [Almansa02]. According to the 

authors, an inpainting method specifically designed for elevation data. A relevant 

property of this method is that it avoids extrapolating the data away from the measured 

minimum and maximum elevation values. 

● Bertalmio inpainter [Bertalmio00]. It takes into account the gradients incident to the 

borders of the areas to interpolate (large areas of missing data). However, this method 

is specifically designed for hole filling, meaning that it does not take into account 

isolated points, it just fills continuous regions of data. This last method is still under 

development, and the results obtained in its current implementation need to be 

improved. 

 

 
(a) Input data 

(b) Sobolev 
 

(c) Total Variation 
 

(d) CCST 
 

(e) AMLE 

Figure 9. Example results of the inpainting methods developed. Data courtesy of the Swedish 

Maritime Administration. 

 

The inpainting methods developed were also publicly released as part of the heightmap 

interpolation toolbox described above. A sample of their results is shown in Figure 9. 

 

While the implementation of inpainting methods within Globe is left as future work, a first 

internal implementation of the methods is started at the [inpainting] branch of the Python 

repository (https://github.com/coronis-computing/heightmap_interpolation). 

4. Gridding Artifacts 

During this period, Coronis tried to automatically identify gridding artifacts present in the global 

DTM, as a result of merging wrongly transformed maps (Figure 10). We identified the source 

of the gridding problem to be a problem from some softwares when converting from Cartesian 

UTM reference systems to the geodetic coordinates used in EMODnet products.  

 

https://github.com/coronis-computing/heightmap_interpolation
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Figure 10. Sample of a gridding artifact in the global DTM. 

 

This problem is well known in the state of the art as the stripping artifact. We started by 

reviewing the solutions in the literature [Crippen1989] [Oimoen2000] [Albani2003] [Tsai2008] 

[Dou2018] [Sun2019]. All the methods reviewed rely on first detecting the pattern and then 

correcting it. Note that, once the pattern is detected, any of the interpolation methods 

described in the previous sections can be used to correct it. 

 

However, most of the methods assume the pattern is present in all the map, so detection is 

just reduced to finding visible lines. Also, most of them assume that this pattern is axis-aligned 

(i.e., the lines in the pattern are either vertical or horizontal). Both assumptions cannot be 

made in our case, since the composite DTM is constructed from different sources and the 

pattern just appears in a few areas and, due to further reprojections and rescaling of the 

original data during composition, the orientation of the lines is arbitrary. 

 

The original idea was to develop a deep learning technique able to automatically identify this 

pattern. However, deep learning mechanisms require a large amount of training data (samples 

of how this pattern appears in different situations, for instance) and we do not have it. We 

identified some of the sources of data contributing to those errors. While these datasets are 

available at the portal, we received no response from the responsibles of the data, so we still 

do not have data to work with. A possibility to explore in the future is to generate this data 

synthetically. Obviously, this is not ideal, as this may leave out non-obvious cases that will not 

be detected by the system if we just use simulated data for training. 

5. Feasibility of Implementing Fledermaus-like 

Navigation and Terrain Exaggeration in 

Cesium 

Finally, Coronis also studied the feasibility of visualizing high resolution DTMs (HRDTM) within 

the web portal. The current web viewer relies on Cesium JS library to render the terrain tiles 

on the web browser. Cesium allows manipulating the 3D view in ways similar to fledermaus. 

In some of the internal meetings, we also discussed the possibility of adding markers or 

different layers of imagery, and Cesium allows both things transparently, and should not be a 

problem to develop a viewer that pops-up when the user selects a given HRDTM. 

 

However, the main disadvantage of this library is that it does not allow the real-time change of 

the terrain exaggeration, according to these sources: 
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- https://community.cesium.com/t/activate-terrain-exaggeration/6098/2 

- https://github.com/CesiumGS/cesium/issues/4342 

 

So, after reviewing the possible options, we studied the different possibilities available to 

implement this feature without changing the core library. We list them in the following sorted 

by level of required effort: 

- Low effort: make the terrain exaggeration “non interactive”. Terrain exaggeration is 

set when creating the viewer object in Cesium, so we can let the user change that 

value and automatically trigger a refresh of the web page. 

- Mid effort: create a 3D model for each HRDTM. According to this source, adapting the 

vertical size should be a matter of changing the tile set transform: 

https://github.com/CesiumGS/cesium/issues/7562 

There are available tools that we could adapt with low effort to transform a terrain into 

a 3D mesh in that format, e.g.: https://github.com/CesiumGS/obj2gltf.git 

However, this does not use the tiles we developed in the previous EMODnet project, 

the result of this conversion would be a single-file 3D model. 

If the size of those HRDTM is small enough so as to be transferred directly to the user 

for visualization, then this is the best option. Otherwise, we are facing the same 

problem we faced with the global DTM, and we need tiling mechanisms. 

- Huge effort: there is a new capability of Cesium called 3D tiles: 

https://cesium.com/blog/2015/08/10/introducing-3d-tiles/ 

As in the previous case, these 3D tiles allow also the scaling of the vertical coordinates 

using the tile set transform. However, as it happened with the terrain tiles, Cesium JS 

is providing the specifications, but not the software for creating them. This was 

overcome by using the software that was built by CORONIS in the previous project. . 
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