

GROWTH AND INNOVATION IN OCEAN ECONOMY – GAPS AND PRIORITIES IN SEA BASIN OBSERVATION AND DATA

EMODNET MedSea CheckPoint

Annex 2 to the Second DAR: APPROPRIATENESS INDICATOR DEFINITIONS

Total number of pages: 16

Workpackage	11	Annex	2 TO DAR
Author(s):	G.M.R. Mar	izella	INGV
	Nadia Pinar	di	INGV
	Eric Moussa	at	Ifremer
	Simona Sim	oncelli	INGV

A project funded by:

EUROPEAN COMMISSION, DIRECTORATE-GENERAL FOR MARITIME AFFAIRS AND FISHERIES, MARITIME POLICY ATLANTIC, OUTERMOST REGIONS AND ARCTIC

Table of Contents

<u>1. I</u>	NTRODUCTION
<u>2. N</u>	AEDITERRANEAN CHECKPOINT TARGETED PRODUCTS
<u>2.</u>	THE APPROPRIATENESS ASSESSMENT METHODOLOGY8
2.1	DATA PRODUCT SPECIFICATION AND TARGETED PRODUCT DESCRIPTION NOMENCLATURE
2.2	UPSTREAM DATA SPECIFICATION NOMENCLATURE8
2.3	Appropriateness quality elements
<u>3.</u>	APPROPRIATENESS INDICATORS DEFINITION11
3.1	ERROR CONVENTIONS
<u>4.</u>	FITNESS FOR USE INDICATORS

1. Introduction

This Annex presents the Quality Elements (QE) composing the appropriateness indicators and the indicator of "Fitness for Use" for the input data sets.

After a list of Targeted products is presented, the appropriateness methodology is introduced followed by the description of the chosen ISO Quality Elements.

2. Mediterranean Checkpoint Targeted Products

The Mediterranean Sea Checkpoint has developed 45 Targeted Products out of the 7 Challenges. The Targeted Products and their components are listed in Table A2.1, A2.2 and A2.3. All products are available from the EMODnet MedSea Checkpoint web page at:

http://www.emodnet-mediterranean.eu/challenges/

N. of TPs	Targeted Product name Content of components		Format
	Challenge 1:	Wind farm siting	•
	MEDSEA_CH1_Product_1	Wind and wave data set from MARINA project	shapefile
	MEDSEA_CH1_Product_2	Suitability index of a wind farm in the NWMed concerning the environmental resources	shapefile
3	MEDSEA_CH1_Product_3 Suitability index of a wind farm in the	MEDSEA_CH1_Product_3_1 Wind Impact	
	NWMed concerning the environmental resources, the natural barriers, human activities, MPA and fisheries	MEDSEA_CH1_Product_3_2 Impact of the natural resources on the total suitability index for offshore wind farm siting	snapefile
	Challenge 2: Ma	rine protected areas	
	MEDSEA_CH2_Product_1	Med protection initiatives (management and conservation areas)	Excel files
	MEDSEA_CH2_Product_2	Med conservation areas and depth zones	shapefile
6	MEDSEA_CH2_Product_3	Proposed regional conservation areas in the Mediterranean	shapefile
	MEDSEA_CH2_Product_4	Qualitative analysis of connectivity between MPAs	shapefile
	MEDSEA_CH2_Product_5	Representativity of habitats/species/other features	
	MEDSEA_CH2_Product_6	The monitoring capacity of biodiversity in MPAs	shapefile
	Challenge 3: 0	Dil platform leaks	-
2	MEDSEA_CH3_Product_1 Oil Platform Leak Bulletin released after	MEDSEA_CH03_Product_1_1 Oil leak forecast	pdf

Table A2.1 Targeted product nomenclature, content and format for Challenges 1,2,3

a DG MARE request received by email on the 28th of July 2014	MEDSEA_CH03_Product_1_2 Impact on the coastal environment	
MEDSEA_CH3_Product_2 Oil Platform Leak Bulletin released after	MEDSEA_CH03_Product_2_1 Oil leak forecast	
the DG MARE alert received by email on the 10th of May 2016	MEDSEA_CH03_Product_2_2 Impact on the coastal environment	pai

Table A2.2 Targeted product nomenclature, content and format for Challenge 4

N. of TP	Targeted Product name	Content of components	Format
	Challenge 4: Climate	e and coastal protection	
	Challenge 4: Climate MEDSEA_CH4_Product_1 Spatial layers of Sea surface temperature trend from observations (HadISST dataset) over periods of 10 (2003-2012), 50 (1963- 2012) and 100 (1913-2012) years. Basin maps and NUTS3 region are considered.	e and coastal protection MEDSEA_CH4_Product_1_1 10 years (2003-2012) basin map MEDSEA_CH4_Product_1_2 50 years (1963-2012) basin map MEDSEA_CH4_Product_1_3 100 years (1913-2012) basin map MEDSEA_CH4_Product_1_4 10 years (2003-2012) NUTS map MEDSEA_CH4_Product_1_5 50 years (1963-2012) NUTS map MEDSEA_CH4_Product_1_6	- shapefile
	MEDSEA_CH4_Product_2 Spatial layer of Sea temperature trend at mid-depth and at sea-bottom from reanalysis (CMEMS Mediterranean Physics Reanalysis) over period of 10 (2003-2012) years	100 years (1913-2012) NUTS map MEDSEA_CH4_Product_2_1 10yrs basin trend at mid-water MEDSEA_CH4_Product_2_2 10yrs basin trend at the sea bottom MEDSEA_CH4_Product_2_3 10yrs NUTS3 trend at the sea bottom	shapefile
13	MEDSEA_CH4_Product_3 Spatial layer of Sea internal energy trend from reanalysis (CMEMS Mediterranean Physics Reanalysis) over period of 20 (1993-2012) years	MEDSEA_CH4_Product_3_1 20yrs basin trend at the surface MEDSEA_CH4_Product_3_2 20yrs NUTS3 trend at the surface	shapefile
	MEDSEA_CH4_Product_4 Spatial layers of sea level trend from CMCC reconstruction over periods of 50 years (1963-2012) and 100 years (1913-2012)	MEDSEA_CH4_Product_4_1 50yrs basin trend MEDSEA_CH4_Product_4_2 100yrs basin trend MEDSEA_CH4_Product_4_3 50yrs NUTS3 trend MEDSEA_CH4_Product_4_4 100yrs NUTS3 trend	– shapefile
	MEDSEA_CH4_Product_5 Spatial layer of sea-level trend from AVISO reconstruction over period of 10 years (2003-2012)	MEDSEA_CH4_Product_5_1 10yrs basin trend MEDSEA_CH4_Product_5_2 10yrs NUTS3 trend	- shapefile
	MEDSEA_CH4_Product_6 Spatial layers of sea–level trend from PSMSL tide-gauges over periods of 50 years (1963-2012) and 100 years (1913- 2012)	MEDSEA_CH4_Product_6_1 50yrs location trend MEDSEA_CH4_Product_6_2 100yrs location trend MEDSEA_CH4_Product_6_3 50yrs NUTS3 trend MEDSEA_CH4_Product_6_4 100yrs NUTS3 trend	– shapefile

	MEDSEA CH4 Product 7 1		
	Sediment Mass Balance at the Coast from		
	Experts Survey and Scientific Literature		
	Review		
MEDSEA CH4 Product 7	MEDSEA CH4 Product 7 2	-	
Sediment Mass Balance at the Coast from	Sediment Mass Balance at the Coast from		
Experts Survey and Scientific Literature	Experts Survey and Scientific Literature	pdf	
Review	Review (10 years)		
	MEDSEA CH4 Product 7 3	-	
	Sediment Mass Balance at the Coast from		
	Experts Survey and Scientific Literature		
	Review (50 years)		
	MEDSEA CH4 Broduct 8 1		
	10vrs basin average at the surface	jpg	
	MEDSEA CHA Broduct 8 2		
MEDGEA CHA Due duet 0	MEDSEA_CH4_Product_8_2	jpg	
MEDSEA_CH4_Product_8	Soyrs basin average at the surface		
Time series of annual average sea surface	MEDSEA_CH4_Product_8_3	jpg	
temperature from observations (Hadiss)	100yrs basin average at the surface		
dataset) over periods of 10 years (2003-	MEDSEA_CH4_Product_8_4	excel file	
2012), 50 years (1963-2012) and 100 years	10yrs NUTS3 average at the surface		
(1913-2012)	MEDSEA_CH4_Product_8_5	excel file	
	50yrs NUTS3 average at the surface		
	MEDSEA_CH4_Product_8_6	excel file	
	100yrs NUTS3 average at the surface		
MEDSEA CUA Droduct 0	MEDSEA_CH4_Product_9_1	ing	
MEDSEA_CH4_Product_9	10yrs basin average at mid-water	lbg	
time series of annual average sea			
temperature at mu-depth and sea-bottom	MEDSEA_CH4_Product_9_2	jpg	
Trom reanalysis (CIVIEWS Mediterranean	10yrs basin average at the sea-bottom		
Physics Reanalysis dataset) over period of	MEDSEA_CH4_Product_9_3	1.01	
10 years (2003-2012)	10yrs NUTS3 average at the sea-bottom	excelfile	
	MEDSEA CH4 Product 10 1		
MEDSEA_CH4_Product_10	20vrs basin annual average of internal	ipg	
Time series of annual average sea internal	energy	199	
energy from reanalysis (CMEMS	MEDSEA CH4 Product 10 2		
Mediterranean Physics Reanalysis dataset)	20vrs NUTS3 annual average of internal	excel file	
over period of 20 years (1993-2012)	energy	excernie	
	MEDSEA CH4 Broduct 11 1		
	Elvrs basin average (1962-2012)	jpg	
MEDSEA_CH4_Product_11	MEDSEA CUA Product 11 2		
Time series of annual average sea level	MEDSEA_CH4_Product_11_2	jpg	
from CMCC reconstruction over periods of	100yrs basin average (1913-2012)		
50 years (1963-2012) and 100 years (1913-	MEDSEA_CH4_Product_11_3	excel file	
2012)	SUYrs NUTS3 average (1963-2012)		
	MEDSEA_CH4_Product_11_4	excel file	
	100yrs NU153 average (1913-2012)		
MEDSEA_CH4_Product_12	MEDSEA_CH4_Product_12_1	ing	
Time series of annual average sea level	50yrs NUTS3 average (1963-2012)	INR	
trom PSMSL time-gauges over periods of	NAEDGEA CUA Droduct 12 2		
50 years (1963-2012) and 100 years (1913-	WEDSEA_CH4_Product_12_2	jpg	
2012)	100yrs NOTS3 average (1913-2012)		
MEDSEA_CH4_Product_13	MEDSEA_CH4_Product_13_1	ing	
Time series of annual average sea-level	10yrs basin average (2003-2012)	341	
from AVISO satellite altimetry over period	MEDSEA_CH4_Product_13_2	excel file	
of 10 years (2003-2012)	10yrs basin average (2003-2012)	excernie	

Table A2.3 Targeted product nomenclature, content and format for Challenge 5,6,7

N. of TP	Targeted Product name	Content of components	Format	
	Challenge 5: Fis	heries management		
	MEDSEA_CH5_Product_1			
	Collated data set of fish landings by	MEDSEA_CH5_Product_1_1	excel file	
	species and year, for mass and number			
	MEDSEA_CH5_Product_2			
	Collated data set of fish discards by	MEDSEA_CH5_Product_2_1	excel file	
	species and year, for mass and number			
	MEDSEA_CH5_Product_3			
	Collated data set of fish bycatch by species	MEDSEA_CH5_Product_3_1	excel file	
	and year, for mass and number			
	MEDSEA_CH5_Product_4			
	Impact of fisheries on the bottom from	MEDSEA_CH5_Product_4_1	shapefile	
	VIVIS data combined with habitat			
8				
	Change level of disturbance from VMS	MEDSEA CHE Broduct E 1	chanofilo	
	data combined with babitat vulnerability	WEDSEA_CH5_FIODUCL_5_1	shapenie	
	MEDSEA CHE Product 6			
	Impact of fisheries on the bottom from AIS	MEDSEA CH5 Product 6 1	shanefile	
	data combined with babitat vulnerability		Shapenie	
	MEDSEA CH5 Product 7			
	Change level of disturbance from AIS data	MEDSEA CH5 Product 7 1	shanefile	
	combined with habitat vulnerability		shapenie	
	MEDSEA CH5 Product 8			
	Impact of fisheries on the bottom from			
	Data Logger combined with habitat	MEDSEA_CH5_Product_8_1	shapefile	
	vulnerability			
	Challenge 6: M	arine environment		
	MEDSEA_CH6_Product_1			
	Maps of Chlorophyll concentration			
	seasonal climatologies (i.e., Winter, Spring,	MEDSEA_CH6_Product_1_1	jpg	
	Summer, and Fall) over the Mediterranean			
	Sea relative to the period 1998-2009.			
	MEDSEA_CH6_Product_2			
	Map of Chlorophyll concentration trend			
	over the Mediterranean Sea, relative to	MEDSEA CH6 Product 2 1	ing	
4	the period 1998-2009, expressed as		142	
	percent of variation respect to the			
	climatological field			
	MEDSEA_CH6_Product_3			
	Maps of average TRIX indices calculated			
	from Mediterranean Sea surface data for	MEDSEA_CH6_Product_3_1	pdf	
	the periods 2008-2012, 1998-2002, and			
	1993-1997			
	IVIEUSEA_CH6_Product_4	MEDSEA_CH6_Product_4_1	pdf	
1	waps showing unterences between most		1	

	recent TRIX estimates (2008-2012) and TRIX from the earlier periods 1998-2002 and 1993-1997		
	Challenge	7: River Inputs	
	MEDSEA_CH7_Product_1 Annual time series of Water Discharge (Qw) [m3/s]	MEDSEA_CH7_Product_1_1 RivDIS, SESAME, CISL MEDSEA_CH7_Product_1_2 E-HYPE daily	excel file
	MEDSEA_CH7_Product_2 Monthly time series of Water Discharge (Qw) [m3/s]	MEDSEA_CH7_Product_2_1 RivDIS, SESAME, CISL MEDSEA_CH7_Product_2_2 E-HYPE daily	excel file
	MEDSEA_CH7_Product_3 Annual time series of TSM from satellite data	MEDSEA_CH7_Product_3_1	excel file
	MEDSEA_CH7_Product_4 Monthly time series of TSM from satellite data	MEDSEA_CH7_Product_4_1	excel file
9	MEDSEA_CH7_Product_5 Annual time series of Total Nitrogen [mg/l]	MEDSEA_CH7_Product_5_1 MEDSEA_CH7_Product_5_2	excel file
	MEDSEA_CH7_Product_6 Monthly time series of Total Nitrogen from model data [mg/l]	MEDSEA_CH7_Product_6_1	excel file
	MEDSEA_CH7_Product_7 Annual time series of Total Phosphorous/Phosphates [mg/l]	MEDSEA_CH7_Product_7_1 SESAME MEDSEA_CH7_Product_7_2 particulate	excel file
	MEDSEA_CH7_Product_8 Monthly time series of Total Phosphorous from model data [mg/l]	MEDSEA_CH7_Product_8_1	excel file
	MEDSEA_CH7_Product_9 Annual time series of Eels production[tons]	MEDSEA_CH7_Product_9_1	excel file
45	Total number of products		

2. The appropriateness assessment methodology

The basic methodology for appropriateness assessment is based upon specific **metadata information and measures** associated to quality elements. Metadata information is related to:

1) the Data Product Specification (DPS);

2) the Targeted Data Product (TDP) description;

3) the Upstream Data (UD) used in the TDP.

The assessment methodology consists of two fundamental steps: the first is the choice of the **quality measures** that characterize DPS, TDP and UD and the second the definition of the **appropriateness indicators** based upon the quality measures.

2.1 Data Product Specification and Targeted Product Description nomenclature

A Data Product Specification (DPS) is: "a detailed description of a dataset or dataset series together with additional information that will enable it to be created, supplied to- and used by- another party" (ISO 19131:2007). In our work, the "dataset" will be called "product" in order not to confuse this with the input datasets required to produce the Challenge Targeted products.

The DPS is a precise technical description of the product in terms of the requirements that it will or may fulfil. The TDP is along the same lines of the DPS but containing a precise technical description of the actual product developed. While the DPS only defines how the product should be, the TDP specifies how it was actually developed. In the Mediterranean CheckPoint the DPS and TPD metadata information will be created for each Challenge using the ISO 19131:2007 specifications, the ISO1957: 2013 Data Quality and the ISO 19115 : 2014.

2.2 Upstream Data specification nomenclature

The Mediterranean Checkpoint will use the DPS and TDP metadata information to assess the adequacy of the input data sets or Upstream Data (UD) that compose the "monitoring" of the Mediterranean Sea at the basin scale.

UD will then be classified on the basis of the same quality elements of the TDP and DPS, continuing the work started in the metadata base of input data sets required by the Challenges. The selection of input data sets was derived from expert specifications of data need for Challenges products required by the tender. The content of the Checkpoint metadatabase is strongly linked to the specific Challenges chosen by the DGMARE call for tender and the expert opinion.

2.3 Appropriateness quality elements

The Data Product Specifications (DPS), Targeted Product Description (TPD) and Upstream Data (UD) quality elements information contain "measures" of ISO quality elements that will allow the construction of the final list of **appropriateness indicators**. The quality elements **chosen for the Mediterranean Checkpoint** are:

- ✓ For spatial information
 - **Completeness** of the horizontal or vertical coverage **extent** (for a given resolution) (2 elements)
 - Accuracy of the horizontal or vertical resolution (or sampling interval) (2 elements)
- ✓ For time information
 - **Completeness** of the temporal coverage extent (for a given resolution)
 - Accuracy of the temporal resolution (or sampling interval)
 - Temporal quality of data with respect to time of update
- ✓ For thematic information
 - **Consistency** : list of the characteristics composing the product
 - Accuracy: of the characteristic thematic accuracy with respect to "standards"

Conceptual consistency is a quality element valid only for the DPS and TDP. In total we have 8 quality elements common to DPS, TDP and UD.

For each quality element, physical "measure units" have been defined and they are presented in the Table A2.4.

	ISC	O Quality element	t	DPS, TPD, UD Quality Measure definitions			
QE #	E # ISO Quality element ISO sub-		ISO definitions	Identification of appropriatness measures	MedCKP name of quality measure	MedCKP definition of quality measure	Units of quality measure
1	Completeness	Data absent Omission from a data set		XXX.AP.1.1	Horizontal Spatial Coverage	Horizontal coverage extent of product (eg: surface of the Mediterranean Sea covered by the product or by the input data set)	km**2
2	Completeness	Omission	Data absent from a data set	XXX.AP.1.2	Vertical Spatial Coverage	Vertical coverage extent of product or the input data set	metres
3	Completeness	Omission	Data absent from a data set	XXX.AP.1.3	Temporal Coverage	Temporal coverage extent of product or the input data set	days
4	Logical consistency	Conceptual consistency	Adherence to rules of the conceptual schema	XXX.AP.2.1	Number of Characteristics (only for DPS and TDP)	Number of characteristics in product (not applicable to input data set)	integer
5	Thematic accuracy	Classification correcteness	Comparison of classes	XXX. AP.3.1	Horizontal resolution	Averaged horizontal mesh	metres

Table A2.4 Quality Elements for DPS, TPD and UD: definition of measures

			assigned to features or their attributes to universe of discourse (ground truth or reference data)			size or equivalent value for the given scale of product or input data set(eg 50m for 1/50 000)	
6	Thematic accuracy	Classification correcteness	Comparison of classes assigned to features or their attributes to universe of discourse (ground truth or reference data)	XXX.AP.3.2	Vertical resolution	Average vertical sampling and description of specific vertical sampling schema of the product or the input data set (100 words max)	metres " _" text
7	Thematic accuracy	Classification correcteness	Comparison of classes assigned to features or their attributes to universe of discourse (ground truth or reference data)	XXX.AP.3.3	Temporal resolution	Temporal sampling interval of product or input data set	days (real number, i.e. 1 hour is equal to 0.04167)
8	Thematic accuracy	quantitative attribute accuracy	Closeness of the value of a quantitative attribute to value accepted as or known to be true	XXX.AP.3.4	Thematic accuracy	Percentage error of the TPD or UD beyond the accuracy of the DPS and description of error concept for the product or the input data set (100 words max) provided by expert	percentage " _" text
9	Temporal quality	temporal validity	validity of data with respect to time	XXX. AP.4.1	Temporal validity	Max elapsed time between last input data records update and product creation date	days

The identification of the appropriateness is composed by characters (XXX) indicating the DPS (Data Product Specification) or TPD (targeted Product Description) or UD (Upstream Data - the Input data set), then by AP (appropriateness), followed by a first number indicating the quality element and by a second number indicating the sub-element:

- Example 1: DPS.AP.1.1 indicating the horizontal spatial coverage of the 'ideal' product'.
- Example 2: TPD.AP.1.1 indicating the horizontal spatial coverage of the product as realized by the Challenge.
- Example 3: UD.AP.1.1 indicating the horizontal coverage of the input data set to the specific product.

3. Appropriateness indicators definition

The basic idea of appropriateness indicators is that they are related to "errors" related to the Quality Elements just defined. Appropriateness corresponds then to "low" errors in the specific quality element.

"Errors" for quality elements are defined as the differences between what has been realized and what was "expected" or "required". DPS includes the requirements or expectations while TDP and UD are the actual products and input data sets used respectively.

Considering this concept of "errors", for every TDP and UD quality elements (QE), we can write:

$$QE_{TDP} = QE_{DPS} \pm \varepsilon_{TDP}$$
(1)
$$QE_{UD} = QE_{DPS} \pm \delta_{UD}$$
(2)

where ε , δ are the errors with respect to the specifications given in the DPS QE. These errors can be positive or negative depending if the product or the upstream data quality element are sufficient with respect to the DPS requirements while errors are negative if the QE is deficient with respect to specifications.

An appropriateness indicator for a specific QE can then be defined on the basis of these errors:

$$\varepsilon_{\text{TDP}} = \text{sign} \left(\text{QE}_{\text{TDP}} - \text{QE}_{\text{DPS}} \right)$$
 (3)

$$\delta_{\rm UD} = \text{sign} \left(QE_{\rm UD} - QE_{\rm DPS} \right) \tag{4}$$

where the "sign" function here is defined in order to have the negative values for the different QE errors represent lower than expected values and the opposite for positive values. Errors will be expressed as percentage errors, i.e.:

$$\varepsilon_{TDP}^{\%} = 100 \left(\frac{\varepsilon_{TDP}}{QE_{DPS}} \right)$$
(5)
$$\delta_{UD}^{\%} = 100 \left(\frac{\delta_{UD}}{QE_{DPS}} \right)$$
(6)

An appropriateness indicator will be defined then for each QE based upon the value of the percentage errors defined in (5) and (6).

3.1 Error Conventions

The choice of "sign" in equations (3) and (4) is crucial in order to have the required meaning of the errors. We then decide to:

- For "completeness" and " consistency" (QE numbers 1,2,3 and 4 in Table A2.4), errors will be calculated as TDP or UD minus DPS. This means that:
 - for "coverage" QE, the positive value indicates that the TPD or UD is better than DPS requirements
 - for "consistency" QE the positive value indicates that the number of characteristics in the TDP are larger than DPS requirements (not applicable for UD)
- For "accuracy" and "temporal quality" QE (QE numbers 5,6, 7 and 9 in Table A2.4), errors will be calculated as DPS minus TDP or UD. A positive value indicates then that the TPD or UD QE is better than DPS requirement.
- For "consistency" QE (number 8 in Table A2.4) there is no difference carried out, the error is taken to be equal to the value given in the TDP or UD quality elements. The error is provided by the experts, and is an overall description of the error concept for the product or input data set.

The ϵ, δ error definitions are defined in details in Table A2.5 and A2.6

Appropriateness indicator values for both TDP and UD can have negative or positive values. The former score is an "under-fitting score, representing lower than expected quality elements for the Targeted product or the Upstream data while the latter is an "over-fitting" score. Both the under-fitting and over-fitting scores have been saturated at $\pm 100\%$.

In order to associate a range of indicator values to a synthetic indicator score it is necessary to establish "thresholds" for the values. It was decided that products with 'errors' within -10% and +10% with respect to DPS are 'appropriate' or at least partly adequate. Values smaller than -10% are under-fitting and not adequate while values large than +10% are over-fitting or totally adequate, no need for further development.

For a certain indicator value range, a colour is associated with the following meaning:

- **Red:** the TDP or UD have errors between -100% and -10% and urgent actions are required to provide datasets fit for use by the Challenges not adequate
- Yellow: the TDP or UD have errors between -10% and +10% and can be considered quite appropriate and monitoring data are fit for use and should be maintained but also improved partly adequate
- **Green:** the TDP or UD have errors between +10% and +100% and there is an 'over offer', no need for further development –totally adequate

QE numb er	Indicator short name	Indicator long name	Definition of quality errors (indicators)	Error definition	Units
1	TDP.APE.1.1	Horizontal Percentage to which the extent of the horizontal spatial coverage of TPD is compliant with the DPS extent in km**2		Percentage	
2	TDP.APE.1.2	Vertical spatial coverage error	Percentage to which the extent of the vertical spatial coverage of TPD is compliant with the DPS extent in metres.	('TPD.AP.1.2' - 'DPS.AP.1.2')*100/' DPS.AP.1.2'	Percentage
3	TDP.APE.1.3	Temporal coverage error	Percentage to which the extent of the temporal coverage of TPD is compliant with the DPS extent in days.	('TPD.AP.1.3' - 'DPS.AP.1.3')*100/' DPS.AP.1.3'	Percentage
4	TDP.APE.2.1	Thematic content error	Percentage of Completeness/Incompleteness of the number of characteristics with respect to the list in DPS	('TPD.AP.2.1' - 'DPS.AP.2.1')*100/' DPS.AP.2.1'	Percentage
5	TDP.APE.3.1	Horizontal resolution error	Percentage to which the product averaged horizontal mesh size or horizontal scale is compliant with the DPS averaged mesh size or horizontal scale	('DPS.AP.3.1' - 'TDP.AP.3.1')*100/' DPS.AP.3.1'	Percentage
6	TDP.APE.3.2	Vertical resolution error	Percentage to which the product averaged vertical mesh size or vertical scale is compliant with the DPS averaged mesh size or vertical scale	('DPS.AP.3.2' - 'TDP.AP.3.2')*100/' DPS.AP.3.2'	Percentage
7	TDP.APE.3.3	Temporal sampling interval error	Percentage to which the product temporal sampling interval is compliant with the one defined in DPS (percentage to be extracted from text of AP.3.3 measure)	('DPS.AP.3.3' - 'TDP.AP.3.3')*100/' DPS.AP.3.3'	Percentage
8	TDP.APE.3.4	Thematic accuracy error	Compliance with the value domain of the accuracy defined in DPS	TDP.AP.3.4'	Percentage
9	TDP.APE.4.1	Temporal validity error	Percentage to which the elapsed time of the product is compliant with the max elapsed time specified in DPS.	(DPS.AP.4.1- TDP.AP.4.1) * 100/DPS.AP.4.1	Percentage

Table A2.5	TDP	quality	element indicator	(error) definitions

QE numbe r	Indicator short name	Indicator long name	Definition of quality errors (indicators)	Error definition	Units
1	UD.APE.1.1	Horizontal spatial coverage error	Percentage to which the extent of the horizontal spatial coverage of UD is compliant with the DPS extent in km**2	('UD.AP.1.1' - 'DPS.AP.1.1')*100/' DPS.AP.1.1'	Percentage
2	UD.APE.1.2	Vertical spatial coverage error	Percentage to which the extent of the vertical spatial coverage of UD is compliant with the DPS extent in metres.	('UD.AP.1.2' - 'DPS.AP.1.2')*100/' DPS.AP.1.2'	Percentage
3	UD.APE.1.3	Temporal coverage error	Percentage to which the extent of the temporal coverage of TPD is compliant with the DPS extent in days.	('UD.AP.1.3' - 'DPS.AP.1.3')*100/' DPS.AP.1.3'	Percentage
5	UD.APE.3.1	Horizontal resolution error	Percentage to which the product averaged horizontal mesh size or horizontal scale is compliant with the DPS averaged mesh size or horizontal scale	('DPS.AP.3.1' - 'UD.AP.3.1')*100/' DPS.AP.3.1'	Percentage
6	UD.APE.3.2	Vertical resolution error	Percentage to which the product averaged vertical mesh size or vertical scale is compliant with the DPS averaged mesh size or vertical scale	('DPS.AP.3.2' - 'UD.AP.3.2')*100/' DPS.AP.3.2'	Percentage
7	UD.APE.3.3	Temporal sampling interval error	Percentage to which the product temporal sampling interval is compliant with the one defined in DPS (percentage to be extracted from text of AP.3.3 measure)	('DPS.AP.3.3' - 'UD.AP.3.3')*100/' DPS.AP.3.3'	Percentage
8	UD.APE.3.4	Thematic accuracy error	Compliance with the value domain of the accuracy defined in DPS	UD.AP.3.4'	Percentage
9	UD.APE.4.1	Temporal validity error	Percentage to which the elapsed time of the product is compliant with the max elapsed time specified in DPS.	('DPS.AP.4.1' - 'UD.AP.4.1')*100/' DPS.AP.4.1'	Percentage

Table A2.6 UD quality element indicators (errors) definitions

4. Fitness for use indicators

The appropriateness indicators for UD defined up to now do not consider the error that propagates from the input data set on the quality of the Targeted product. In other words the UD errors could be larger than the one calculated as a difference with DPS because they greatly impact the quality of the Targeted Product. Viceversa the UD errors could be large but their impact on the quality of the TDP small.

In mathematical terms, UD and TDP quality elements are two realizations of our expectations, given by DPS and the have two different errors ε , δ . Thus in principle it is possible, in a least square term, to combine these two estimates of the error to give a combined estimate.

We would like then to define a "combined error" for each UD that is defined now as the "fitness for use" error $\Delta_{FU}^{\%}$. The meaning is that for each upstream data set is given by input data set error "modulated" by the product error. Moreover Please note that "fitness" has to have the opposite meaning of "error" so that a change in sign is required.

errors	$\varepsilon_{TDP}^{\%}$ negative (underfitness)	$\varepsilon_{TDP}^{\%}$ null or positive (overfitness)	
$\delta^{\%}_{UD}$ null or positive (overfitness)	$\Delta_{FU}^{\%} = 100 + \delta_{UD}^{\%}$	$\Delta_{FU}^{\%} = 100 + rac{\left arepsilon_{TDP}^{\%} ight \left \delta_{UD}^{\%} ight }{\sqrt{arepsilon_{TDP}^{\%2} + \delta_{UD}^{\%2}}}$	
	Over-Fitness for use	Over-Fitness for use	
	Explanation: this is the case where the input data set is over fitted but the product is under fit. This may mean that some other input data set degrades the quality of the product, not the specific input data set under investigation.	Explanation: this is the case where both the input data set and the product are over fitting the specifications. If $\epsilon_{TDP}^{\%}$ is zero then $\Delta_{FU}^{\%} = 100$ meaning that it does not matter how positive is $\delta_{UD}^{\%}$ for that product.	
$\delta_{UD}^{\%}$ negative (underfitness)	$\Delta_{FU}^{\%} = 100 \; - rac{\left arepsilon_{TDP}^{\%} ight \left \delta_{UD}^{\%} ight }{\sqrt{arepsilon_{TDP}^{\%2} + \delta_{UD}^{\%2}}}$	$\Delta_{FU}^{\%} = 100 - rac{\left arepsilon_{TDP}^{\%} ight \left \delta_{UD}^{\%} ight }{\sqrt{arepsilon_{TDP}^{\%2} + \delta_{UD}^{\%2}}}$	
	Under-Fitness for use	Under-Fitness for use	
	Explanation: this is the case where both the input data set and the product is undefit. We "modulate" the input data set error with the product error. If both UD and TDP errors are negative FU is assumed zero.	Explanation: this is the case where the input data set is underfit but the final product overfit. We "modulate" the input data set error with the product error. If $\varepsilon_{TDP}^{\%}$ is zero then $\Delta_{FU}^{\%} = 100$ and again it does not matter how negative is $\delta_{UD}^{\%}$ for that product.	

We can have the following cases :

Applying these formulas to the data, results are not completely convincing, probably due to the scarce statistics of the UD and TDP errors (we have only 90 data sets subdivided between 45 TDP).

The application of FU indicator will be further developed when statistically significant number of errors will be available. The combination formula in fact should be used not with the error standard deviations.