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1. Preface 
The study was assigned to Advance Services (https://www.advancesvs.com/) through a sub-contract signed in 
September 2022 with a duration of six months. The work was performed in close collaboration with the HCMR 
team (Ms. Dimitra Mavraki, Mr. Savvas Paragkamian, Dr. Vasilis Gerovasileiou). Dr. Evangelos Pafilis 
(Bioinformatics and Biodiversity Informatics Researcher C, HCMR) also supported this work by proposing 
appropriate tools for text mining, by giving an overview of the status of text mining tools and related 
bibliography, and by setting the starting structure of the feasibility study.   

During the period of six months, several meetings in person were organised -at least once per month-; while for 
more immediate response to any problems or queries that occurred, several video calls took place. Mr. Savvas 
Paragkamian (PhD student on Microbial Ecology), who has experience in text mining and on the curation process 
of historical literature (Paragkamian et al., 2022), closely monitored the work progress, the development and 
implementation of the text mining workflow on traits, and co-organised with Advance Services the online and 
free training session (see section 6). On the other hand, Ms. Dimitra Mavraki, as Data manager in HCMR, tried 
to combine both the technical and practical parts of the work. Although the nature of this study was technical 
(e.g., source codes, tools), emphasis was also given towards the ultimate target of assisting the work of data 
curators through an easy-to-use tool for recognising ecological traits and devices/methodologies on the 
working papers/pieces of text.  

The process of selecting Advance Services started with a call published on the 27th of June 2022, in which the 
EMODnet Biology IV WP2 Leaders expressed their interest in external collaborators who might be interested in 
facilitating a feasibility study on Ecological Traits and sampling devices/methodologies identification with text 
mining. A detailed description of the project was provided along with the call. The call was also broadcasted in 
a community of trait-based researchers via https://github.com/open-traits-network/open-traits-
network.github.io/issues/178. The expression of interest was open until the 31st of July. On the 26th of August, 
an interview with the only applicant took place, during which Advance Services was selected as a qualified 
collaborator. 

Advance Services is a high-tech enterprise that is active in designing and implementing advanced software 
solutions, ETL (Extract, Transform and Load) processes and semantic big-databases. It was founded in 2018 in 
Heraklion, Crete and has already been established as one of the innovators in its field. The Advance Services 
team includes Computer Scientists and Software Engineers with more than 10 years’ experience in large scale 
infrastructure projects supported by either private, European, or national funding. Team members have strong 
expertise in designing and implementing high quality integrated information systems and applications. 
Furthermore, the scientific background of the team is justified by several publications (>50) in international 
conferences and journals.  

https://www.advancesvs.com/
https://github.com/open-traits-network/open-traits-network.github.io/issues/178
https://github.com/open-traits-network/open-traits-network.github.io/issues/178
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2. Introduction 
This report is related to D2.5 entitled “Feasibility study for recognition of specific ecological traits and/or 
sampling devices/methodologies in text”. The main aim of the study was to assess the accuracy of text mining 
prototypes regarding these entities; advise on next actions; examine whether further development and fine 
tuning should be sought. More specifically, it focused on ecological traits, life stages, and body length extraction 
with text mining and was built upon previous work on traits and text mining of EMODnet Biology. 

Traits refer to the characteristics of a species, including its morphology, anatomy, physiology, biochemistry, and 
phenology. Scientists use traits to describe the characteristics of the taxa they study, and they are closely related 
to Essential Biodiversity Variables (EBVs) and ecosystem function. However, the meaning of traits is often 
inconsistent in literature due to their vast diversity and long history. To address this issue, trait databases have 
been created for many taxonomic groups, and standard vocabularies have been established to standardise trait 
terms. The Open Traits network has also been launched to promote open science standards and practices in the 
field. 

Text mining tools can assist in curating and discovering knowledge from multiple documents, but the training 
and evaluation of these tools rely on curated and annotated documents (corpora) and dictionaries (e.g., 
controlled vocabularies, ontological term and/or database entry names and synonyms). 

One example of successful application of text mining tools is the recognition of species names in text. Further 
research is needed to examine which traits are feasible to mine from text and which methods are most promising 
for the task.  

The process of text mining involves several activities that allow the user to derive information from unstructured 
text data. Before the user can apply various text mining techniques, they must begin with text pre-processing, 
i.e., cleaning and converting text data into a usable format. This practice is a core aspect of natural language 
processing (NLP) and typically involves techniques such as language identification, tokenization, part of speech 
tagging, chunking, and syntax parsing to appropriately format the data for analysis (IBM. (n.d.). Text mining). 

The steps in determining whether it is possible to extract ecological species traits, from marine biodiversity 
documents, are the following: a. vocabulary establishment, b. corpus establishment, c. corpus annotation, d. 
data format preparation, e. model training for NER (Named Entity Recognition) and f. model results evaluation.  

In text mining, a corpus refers to a large and structured set of pieces of text that are collected and used for 
linguistic analysis and computational processing. A text corpus can be thought of as a database of natural 
language texts that are typically stored in electronic form and can be accessed and analysed using software 
tools. Text corpora are often used in natural language processing (NLP) and machine learning applications to 
train and evaluate models for various text-related tasks, such as sentiment analysis, named entity recognition, 
and text classification (Manning et al., 1999). 

An annotation tool is a software application that allows users to add or edit annotations or notes to text, images, 
or other digital content. These annotations can be used for a variety of purposes, including annotating, marking 
content for revision, or highlighting important information, and training custom NER models as required by this 
study. Using annotation tools curators can annotate corpora in order to train their NER models (Asgari et al., 
2021). 

Named Entity Recognition (NER) is a sub-task of NLP that involves identifying and categorising entities in text 
into predefined categories such as species names, people's names, organisations, places, and others. The goal 
of NER is to extract structured information from unstructured text so that it can be more easily analysed and 
understood. NER can be used in various applications such as information extraction, question answering 
systems, and text classification (Jurafsky et al., 2020). 

NER is facilitated by a document tagger which is a software tool that automatically annotates or categorises text 
documents according to certain criteria, such as topics, sentiment, entities, etc. Document tagging involves 

https://opentraits.org/
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assigning one or more tags or labels to a document that describe its content, purpose or structure. This process 
helps to organise and categorise documents, so that they are easier to search, retrieve and analyse. 

This work is built upon previous work of EMODnet Biology, namely EMODnet Phase III      D3.7: Scientific 
document on the design of the workflow of text mining technologies in data archaeology, which identified traits 
as an underdeveloped entity type in the field of text mining. EMODnet projects on traits include Benthic 
occurrences, habitat maps, and species traits, EMODnet Biology thermal traits and the recently launched Btrait, 
which analyse and/or provide the means to analyse trait data.  

Structure of the Report 
The document starts with a Preface and an Introduction, which provide an overview and background of the 
research work.  

The Methodology section is divided into several subsections, including Steps, Criteria for vocabulary and corpus 
establishment, Criteria for tool evaluation, Programming Environment, and Reproducibility Code. This section 
describes the methods, techniques, and tools used in the research work.  

The Results - Discussion section contains several subsections, which present and discuss the findings of the 
research work. The subsections include Vocabulary, Corpus, Annotation, Taggers and NLP, Model training, 
Model evaluation and performance, Summary, and Other tools for further exploration.  

The section on Future work and Further improvements outlines potential areas of research and development for 
future work. The document concludes with the Online training session report, the References, and an Appendix 
that contains the installation instructions for the tools used in the study. 

 

  

https://emodnet.ec.europa.eu/sites/emodnet.ec.europa.eu/files/public/D3.7.pdf
https://emodnet.ec.europa.eu/sites/emodnet.ec.europa.eu/files/public/D3.7.pdf
https://github.com/EMODnet/EMODnet-Biology-Benthic-Habitats-Occurrences-Traits
https://github.com/EMODnet/EMODnet-Biology-Benthic-Habitats-Occurrences-Traits
https://github.com/EMODnet/EMODnet-Biology-thermal-traits
https://github.com/EMODnet/Btrait
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3. Methodology 

3.1 Steps 
During the development and training of the text mining models, the following steps were followed 
(Figure 1): 

1. Vocabulary Establishment 

2. Corpus Establishment  

3. Tools Selection 

4. Corpus Annotation   

5. Data format preparation 

6. Model Selection 

7. Model Training for NER (Named Entity Recognition) 

8. Model Evaluation 

 

 
Figure 1. Steps followed for the feasibility study 

 

3.2 Criteria for vocabulary and corpus establishment 
The main criteria used to establish the corpus were: a. that the texts included as the corpus had to be scientific 
articles and b. they had to comprise information about traits of marine species. 

In addition, the primary criterion for the establishment of vocabularies was that four dictionaries had to be 
created, one for each trait category of interest (life stages, distribution descriptors, body length), and one for 
sampling devices. Furthermore, all entities had to be linked through a descriptor link to marine species traits. 

 

3.3 Criteria for tool evaluation 
In Named Entity Recognition (NER) model training, the common evaluation metrics used to measure the 
performance of the model are the following:  a. accuracy, b. precision, and c. recall (Reimers et al., 2020). 

a. Accuracy:  
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measures the percentage of correctly predicted tokens in the dataset. It is calculated as the number of 
correctly predicted tokens divided by the total number of tokens. 

b. Precision:  

measures the proportion of true positive entity predictions out of all predicted entities. It is calculated 
as the number of true positive entity predictions divided by the sum of true positive and false positive 
entity predictions. 

c. Recall:  

measures the proportion of true positive entity predictions out of all actual entities in the dataset. It is 
calculated as the number of true positive entity predictions divided by the sum of true positive and false 
negative entity predictions. 

In general, a good NER model should have high accuracy, precision, and recall values. However, the specific 
metric(s) that are most important will depend on the particular use case and the associated costs and benefits 
of different types of prediction errors. For example, in some applications, such as information extraction or 
named entity linking, recall may be more important than precision, while in others, such as sentiment analysis, 
precision may be more important than recall. Precision and recall representation are shown in Figure 2. 

Precision and Recall are complementary metrics that have an inverse relationship. Therefore, if both are of 
interest then it is better to use the F1 score to combine precision and recall into a single metric. This score is 
calculated as the harmonic mean of precision and recall, where a score of 1 indicates perfect precision and recall, 
and a score of 0 indicates poor performance. The formula for F1 score is: 

F1 score = 2 * (precision * recall) / (precision + recall) 

F1 score is often used as a summary statistic to compare the overall performance of different models or to 
optimise hyperparameters of a model. In general, a higher F1 score indicates better performance of the model, 
and a model with high F1 score means it is able to balance between precision and recall. 
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Figure 2. A representation of precision and recall metrics. Precision is calculated as the number of true positive 
entity predictions divided by the sum of true positive and false positive entity predictions. Recall is calculated 
as the number of true positive entity predictions divided by the sum of true positive and false negative entity 

predictions (Walber (2014). Precision and Recall [Graph illustration]) 

3.4 Programming Environment 
In order to train the models, a programming environment called Google Colaboratory is used for notebook 
production, edit and run processes. Google Colaboratory, known as "Colab", is a data analysis and machine 
learning application that enables the integration of rich text, charts, photos, executable Python code, and more 
into a single document stored in Google Drive. It was selected due to its ability to handle notebooks and attach 
a google drive folder. Such ability gives the convenience of having a folder in a drive account and just connecting 
it with the notebook in Google Colab, set the path and run the cells without need for example of uploading the 
different input files. 

 

3.5 Reproducibility Code 
Google Colab notebooks are reproducible in the way that are implemented, while users can connect the project 
folder with their google account by adding a shortcut, run the code blocks (python snippets) and train a model 
without any other process. The code can be found in this git repository, where a link is given for the google 
drive folder in order to run the code. 

 

https://research.google.com/colaboratory/faq.html
https://github.com/EMODnet/EMODnet-Biology-feasibility-ecological-traits
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4. Results - Discussion 

4.1 Vocabulary  
Dictionaries for marine species traits were selected and manually extracted from the WoRMS marine species 
traits wiki (Marine Species Traits Wiki) and the BIOTIC traits dictionary and categorised into four 
entities/categories with a descriptor link to marine species traits. The entities of the vocabulary are as follows:  

i. Distributional descriptors (194 entities), that refer to environment, habitat, province, vertical 
biological zone and depth of the species, 

ii. Life stages (38 entities), which refer to the life stage of the species, 

iii. Body size (23 entities), which refers to the qualitative and quantitative body size of the species and 

iv. Sampling device (28 entities), i.e.  sampling tools for pelagic and benthic organisms, dredges, corers 
and hyper benthic sleds and nets. 

Dictionaries can be found here. 

 

4.2 Corpus 
After conducting an online search of publications and their corresponding citations, we have arrived at the 
conclusion that no curated corpus on marine species traits currently exists. Thus, it was necessary to develop it. 

To create the corpus, the literature on marine species traits (Marine Species Traits Wiki) was surveyed, a literature 
dedicated to texts on the ecological traits that were suitable for this study. Since it was difficult to find texts with 
multiple references related to the entities of interest, the best choice was to keep the summaries of related texts 
that contained the most information. The first corpus consisted of 14 abstracts. Additionally, to assist the work 
of the corpus development, the HCMR team provided historical literature on marine species, which included 
information related to sampling devices, locations, body size and life stage of specific species. As a result, the 
final corpus consisted of five full text scientific documents along with the previous 14 abstracts. 

Corpus texts can be found here. 

 

4.3 Annotation  
In order to provide proper training for the selected NLP libraries, a very important step was the selection of the 
annotation tool. The annotation tool is required for the categorisation and the labelling of the desired words 
into the four following categories, as it was required by the Feasibility Study:  

1. Body Size 

2. Distribution Descriptors 

3. Life Stages 

4. Sampling Devices 

4.3.1 Brat 

BRAT (Rapid Annotation Tool) (Stenetorp et al., 2012) is a free, web-based text annotation tool designed for 
annotating text with structural information such as named entities, events, relationships, and co-references. It is 
widely used for natural language processing and information extraction tasks, especially in computational 
linguistics. BRAT supports multiple annotators working simultaneously on the same document and provides 
visualisations of annotation results for improved control of data quality and inter-annotator agreement. 

https://www.marinespecies.org/traits/wiki/
https://www.marinespecies.org/traits/wiki/
https://www.marlin.ac.uk/biotic/about.php
https://mda.vliz.be/directlink.php?fid=VLIZ_00000804_643ff3abda3b6224113701
https://www.marinespecies.org/traits/aphia.php?p=sources
https://mda.vliz.be/directlink.php?fid=VLIZ_00000804_643ff3abda3b6224113701
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BRAT provides built-in support for annotating named entities, such as people, organisations, and locations, as 
well as events and relationships between entities. BRAT can also annotate user-defined entities, thus allowing 
the annotation of information that is project specific. The process of annotating entities in BRAT involves 
selecting text in the document and tagging it with the appropriate entity type. The annotated entities can then 
be visualised and organised so that the relationships between entities in the text can be easily understood. 

BRAT's entity annotation capabilities make it a useful tool for natural language processing, such as information 
extraction and text categorisation, and for creating training data for machine learning models. On the other 
hand, user-defined entities require manual annotation, which can be time consuming and error prone. Defining 
custom entity types can be challenging, as they must be meaningful, clearly defined, and relevant to the text 
being annotated when referred to the configuration. This can be a complex task that requires expertise and 
experience. 

The BRAT server is implemented in Python (version 2.5), while the installation script assumes a UNIX-like 
environment. 

The URL of the tool is: http://brat.nlplab.org/index.html 

4.3.2 Tecoholic 

Tecoholic (Tecoholic. (n.d.).) is another tool that is only for text annotation. To use it properly, the user must 
divide the content into paragraphs or text passages and use a consistent separator between passages, e.g., 
newline, empty line, or a text separator such as -. For large datasets, the text must be split into smaller files to 
tag them separately. Then the entity labels are simply created using the "new tag" button and the user can start 
annotating the text. After processing, the annotation file can be downloaded in JSON format. Annotation files 
from Tecoholic can be easily converted and used as training data in spaCy (description included in section 4.3.3). 

The URL of the tool is: https://tecoholic.github.io/ner-annotator/ 

4.3.3 spaCy NER annotation tool 

spaCy NER annotation tool is capable of annotating text data for spaCy NER to create a custom NER model. 
Copying and pasting the raw text and adding the entity names in the "named entities" section is followed by 
selecting the text and then the desired entity. Once the annotation is complete, it is worth noting that the 
annotations can be used as training data in spaCy by simply copying and pasting them into the spaCy 
environment. 

4.3.4 UBIAI 

UBIAI (UbiAi. (n.d.)) is a fast-labelling tool for annotating data, but it is not open source. Import data can be in 
the format of TXT, PDF, HTML or DOCX. UBIAI can also recognise JSON files with existing entities, CSV files 
containing one document per row and zip files containing TXT, PDF or HTML. UBIAI does not require any 
installation and can be found and used via the link. Once the user has created a project, uploaded the 
documents, and selected the type of project annotation, they can declare the entities and start annotating. The 
type of the annotation is about ‘single character span based’ or ‘word span based’, while the user can choose 
OCR annotation for PDF. After completing annotation, annotation files can be exported in different formats, 
such as spaCy format for training, JSON or IOB (short for inside, outside, beginning) format, which is a 
requirement for the training/fine tuning of different models.  

 

4.4 Taggers and NLP  

4.4.1 Gnfinder 
Gnfinder (Mozzherin et al., 2023) is a tool that allows users to find scientific names on web pages, PDFs, MS 
Office documents, images, or texts. It is considered as a very fast finder of scientific names and it uses both 

http://brat.nlplab.org/index.html
https://tecoholic.github.io/ner-annotator/
https://tecoholic.github.io/ner-annotator/
https://tecoholic.github.io/ner-annotator/
https://ubiai.tools/
https://finder.globalnames.org/
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dictionary and NLP (Natural Language Processing) approaches, such as information extraction. Gnfinder can 
work with many file formats and includes name verification against many biological databases. 

Gnfinder features: 

• Includes REST API and a web-based user Interface.  

• Extracts text from PDF files, MS Word, MS Excel, HTML, XML, RTF, JPG, TIFF, GIF etc. files for name recognition.  

• Downloads web pages from a specified URL for name recognition.  

• Optionally, automatically detects the language of the text, and adapts the Bayes algorithm for the language. 
English and German languages are currently supported.  

• Uses complementary heuristic and natural language processing algorithms.  

• Optionally checks found names against multiple biodiversity databases. 

Gnfinder was studied and tested in different texts, URL and PDF to evaluate its performance and accuracy by 
manually annotating the texts with the scientific names and then comparing the annotations with the results of 
Gnfinder. It seemed to perform well, not only in searching for scientific names but also in their verification against 
biodiversity databases. Using the same example in the command line version and then online, it is observed that 
the online version of the tool could not recognise some non-normalized text names such as, “(Atherion).” This 
format in a sentence could not be recognised as the scientific name Atherion. Finally, it seems that Gnfinder 
cannot be helpful in the first steps of the study because it cannot recognise marine species traits. 

4.4.2 JensenLab Tagger 
With JensenLab Tagger (Juhl Jensen, L. (n.d.)) we refer to Tagcorpus, a dictionary based approach. Tagcorpus is 
a C++ program that allows users to tag a corpus of documents with the search term they enter. It is widely used 
to identify and label various entities in text data, such as proteins, species, diseases, tissues, chemicals, drugs, 
and Gene Ontology (GO) terms among others, in articles in the Medline corpus. Often two types of information 
are tagged simultaneously to find common mentions. For example, proteins and diseases, or human proteins 
and viral proteins. 

JensenLab Tagger is a pre-trained Named Entity Recognition (NER) model. While it may work well for general 
purpose entity recognition in these specific domains, it may not perform optimally for custom NER tasks that 
involve different entity types or require specific domain knowledge. 

To create a custom NER model, it is needed to train your own model using a labelled dataset that include 
examples of the entities you want to recognise. This involves selecting and preparing the appropriate data, 
choosing a suitable algorithm, and fine tuning the model on your specific task. 

In summary, JensenLab Tagger is not designed for custom NER tasks and may not perform well on tasks that 
involve different entity types or require specific domain knowledge. To create a custom NER model, it needs to 
train your own model using a labelled dataset and an appropriate algorithm. 

4.4.3 Extract  
EXTRACT (JensenLab. (n.d.)) and (Pafilis et al., 2016) identifies genes/proteins, chemical substances, living things, 
habitats, tissues, illnesses, phenotypes, and Gene Ontology terms that are referenced in a text. It maps these 
terms to the appropriate ontology/taxonomy entries and returns a link with more information). The JensenLab 
tagger lies at the core of EXTRACT. Said differently, EXTRACT is a web-based front-end for the JensenLab tagger. 
Built as curator-assistant, among others it highlights the identified entity mentions (incl. support for Organism, 
Environments and Tissue dictionaries, available at Index of / (jensenlab.org)). 

When testing EXTRACT in the literature related to the topic of our study, entities related to body size could not 
be detected, while the feature "Adult/Larva" (which refers to life stage) was assigned to the type "Tissue" as 
shown in Figure 3, and that is expected since it is not concluded in the established dictionaries. Adapting the 
code to the study approach would be a significant challenge due to the complexity of the process combined 

https://github.com/larsjuhljensen/tagger
https://github.com/uwgraphics/Ubiqu-Ity/blob/master/Ubiqu/tagCorpus.py
https://extract.jensenlab.org/
https://extract.jensenlab.org/
https://download.jensenlab.org/
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with the limited study time. As a result, it has been decided that the EXTRACT will not be pursued for the purpose 
of the study. 

 
Figure 3. Extract example in the browser. 

4.4.4 spaCy 
spaCy (Honnibal et al., 2017) is an open-source software library for advanced natural language processing (NLP) 
in Python. It is designed to process large amounts of text quickly and efficiently, and to provide easy access to 
NLP tasks such as tokenisation, text classification, and named entity recognition. The features of spaCy (Figure 
4) have been evaluated for their performance using specific examples. Overall, spaCy is considered one of the 
most user-friendly libraries for natural language processing. It has a clean and simple API, pre-trained models, 
and supports multiple languages, making it a popular choice for NLP task processing. 

spaCy's NER system is based on the statistical learning method, which uses machine learning algorithms such 
as Conditional Random Fields (CRF) to predict entities in text. spaCy's NER is fast, accurate, and easy to use, 
providing named entities as objects and allowing easy integration with NLP pipelines. spaCy also provides 
visualisation tools for understanding NER output and a variety of evaluation metrics for assessing NER 
performance. 

 

https://spacy.io/


 EMFF/2019/1.3.1.9/Lot 6/SI2.837974 – Lot No VI - Biology  
 

15 

 

 
Figure 4. spaCy features 

4.4.5. spaCy blank English model  
spaCy (Honnibal et al., 2017) is an open-source natural language processing (NLP) library in Python. The "blank 
English model" refers to a version of the library that hasn't been pre-trained for any particular NLP task. This 
means that it doesn't have any pre-existing knowledge of the English language but can still be used to perform 
basic NLP operations such as tokenization, stemming, and lemmatization. To use the blank English model of 
spaCy, you need to install the library (see installing spaCy above) and load the model into your Python code 
environment. 

4.4.6 NLTK 

NLTK (Natural Language Toolkit) (Bird et al., (n.d.)) is an open-source library for Natural Language Processing 
(NLP) in the Python programming language. It provides a set of tools for tasks such as tokenisation, part of 
speech tagging, named entity recognition, sentiment analysis, and more. NLTK is used in academia and industry 
for NLP research and development, and it is considered one of the most comprehensive NLP libraries on the 
market but can be slower and more memory intensive compared to spaCy. 

NLTK's NER system uses a sequence labelling approach in which each word in a sentence is assigned to a label 
indicating whether it is an entity or not. The NER system uses a Unigram Chunker, a simple rule-based NER 
system that uses a regular expression parser to identify entity phrases in text. It is worth noting that while NLTK 
provides NER capabilities, it may not be as fast or efficient as other NER libraries such as spaCy, and its 
performance may not be as good as more advanced NER systems. NLTK also provides tools to evaluate and 
improve NER performance, such as precision, recall, and F1 score metrics. 

Neural network model option is not available in NLTK. In order to build a named entity recognition model in 
NLTK, the user has to write their own code to recognise named entities in the text based on the tokenised text 

https://www.nltk.org/
https://www.nltk.org/book/ch07.html
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and the POS (part-of-speech) tags. This can involve defining patterns of words and POS tags that correspond 
to named entities and using NLTK's chunking and parsing functions to identify named entities in the text.  

4.4.7 RoBERTa 
RoBERTa (Liu et al., 2019) is a large Deep Learning based language model developed by Facebook AI. It is an 
improvement of the BERT (Bidirectional Encoder Representations from Transformers) model, which is one of the 
most popular pre-trained models for NLP tasks. RoBERTa is trained on a larger corpus of text data and 
incorporates several changes to the training procedure that should further improve the quality of the resulting 
speech representations. It has achieved top performance on several NLP benchmarks and is used in many NLP 
applications, such as sentiment analysis, question answering, and text classification. The RoBERTa transformer 
model has also been fine-tuned using spaCy transformers. 

 

4.5 Model training 

4.5.1 BERT/BioBERT 
BERT (Bidirectional Encoder Representations from Transformers) (Wolf et al., 2021) is a pre-trained deep learning 
language model developed by Google. It is a transformer-based architecture trained on a large corpus of text 
data using an unsupervised learning approach. The model is trained to predict missing words in a sentence 
(masked language modelling) and predict the next sentence in a sentence pair (next sentence prediction). It is 
based on the architecture of BERT but has been specifically trained on a large corpus of scientific publications 
from the life sciences and medicine. The goal of BioBERT is to provide a high-quality NLP model capable of 
accurately processing and understanding the unique vocabulary and terminology used in the biological and 
medical fields. This makes BioBERT particularly useful for NLP tasks in these domains, such as named entity 
recognition, relation extraction, and question answering. 

BERT is also unique as it processes text in a bidirectional manner, meaning that the model considers both the 
previous and subsequent words when processing a given word. This contrasts with traditional language models, 
which typically process text only from left to right. Thanks to this bidirectional approach, BERT is able to 
understand the context of words in a sentence in a more robust and sophisticated way. Pre-trained versions of 
BERT in multiple languages are freely available so that researchers and practitioners can use the model as a basis 
for their own NLP projects. 

Modern pre-trained models can be simply downloaded and trained using the APIs and tools provided by 
Transformers. Pretrained models can save users the time and resources needed to train a model from scratch 
while lowering the users’ computing financial expenses and carbon footprint. These models cover typical NLP 
tasks like text classification, named entity recognition, etc. in a variety of modalities. 

Spacy-transformers package provides spaCy model pipelines that wrap Hugging Face’s transformers package, 
so they can be used in spaCy. As a result, modern transformer topologies like BERT are easily accessible. 

4.5.2 Data format preparation 
As the very first step, text mining prototypes were selected and the input data format for each one was examined 
before training. The models to be trained or fine-tuned were the spaCy English model, the “BERT”, “BioBERT” 
and the “roBERTa”, as those were considered the most appropriate according to our evaluation process. The 
input data are considered as the annotations of the corpus, divided into three categories: training data, 
development data and evaluation data (Table1 presents the corpus range and the data division). The corpus is 
composed of PDFs and texts. 

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
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Table 1. Corpus Representation 

 Training 
data 

Development 
data 

Evaluation 
data 

Number of full 
texts-abstracts 

2-11 2 1-3 

Number of entities 814 455 707 

For the corpus annotation at the second step, UBIAI was used in order to annotate the data and download them 
in IOB and spaCy’s NER format, that are the required formats for the different models selected training. For 
training in spaCy the annotated data have to be in the following format: “sentence”, (entity, begin char, end 
char), where begin and end character refer to the position of the word inside the sentence and start counting 
from 0 at each one. For RoBERTa, BERT and BioBERT fine tuning, annotations format is the ‘IOB’ labelled per 
word (a list of words with the annotated entities for each one, labelled with I for inside, B for beginning or O for 
outside, see Table 2). 

Table 2. IOB format annotations’ example 

Entity IOB label 
Migratory O 

Travels O 
In O 

Big O 
shoals, B-DISTRIBUTION_DESCRIPTOR 

Appears O 
In O 

Considerable O 
Quantities O 

About O 

Examining the UBIAI output annotations for the desired formats, it was noticed that spaCy NER’s format had 
wrong offsets for the beginning and the end character of the entity in the sentence, so some conflict of UBIAI 
might have occurred. The labels were pointing to different words than the annotated entities (see the example 
below “Example of spaCy’s format issue”). Additionally, the first issue was that instead of outputting the text 
divided into sentences with entities for each one, it has an output of the whole text followed by all the annotated 
entities, counting offsets without resetting the counter to zero in the beginning of the sentence. This issue was 
resolved by a custom script (contained in the Git repository) that converts this format to the sentence-by-
sentence format for spaCy’s model training. 

IOB annotations per word and per sentence were needed, so IOB format output from UBIAI (per word) was 
converted into per sentence format with a custom script (contained in the Git repository).  

In conclusion, a general UBIAI problem regarding PDFs and OCR (Optical character recognition), is that the post 
processed text has many extra characters and separated words, a condition that can cause misunderstandings 
or losses in the training process. In addition, text from images cannot be identified by UBIAI. 

Example of spaCy’s format issue: 

 
In the sentence:  

“SOME POLYCHAETE SPECIES FROM THE SOFT BOTTOM OF THE EASTERN HARBOUR OF ALEXANDRIA, 
EGYPT, WITH SPECIAL REFERENCE TO ORBINIIDS AND PARANOIDS HABITATS” 
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An extracted entity from UBIAI is: (35, 48, Distribution_descriptor) for the “soft bottom” instead of (33, 
44, Distribution_descriptor), where 33 is the character count for starting letter “s” and 44 for ending 
letter “m”. 

 
 

4.6 Model evaluation and performance 

4.6.1 spaCy  

The evaluation of this system showed that a custom named entity recognition system can support our approach 
of extracting marine species features. In addition, the system could be implemented by using a pre trained or 
empty model of spaCy for training based on our training data (Figure 5). Training the spaCy model requires 
training data, i.e., annotated text examples related to the study approach, in this case, marine species features. 
In conclusion, spaCy appears to fulfil our expectations. 

 

 
Figure 5. spaCy’s model training process 

 

Blank English spaCy model (Honnibal et al., 2017) was trained for custom NER based on the accuracy, with the 
annotated datasets which contain the entities/labels for marine species traits based on the categories: 
distribution descriptor, life stage, body size and sampling device. The model was evaluated on the evaluation 
dataset based on precision, recall and f1-score metrics.  

In spaCy training, the following evaluation metrics are commonly used for NER models: 

Loss tok2vec: measures the error of the model in predicting the semantic representation of the input text, using 
the tok2vec component of the pipeline. The value range of loss tok2vec can be between 0 and infinity.  

Loss NER: measures the error of the model in predicting the named entities in the input text, using the named 
entity recognition (NER) component of the pipeline. The value range of loss in Named Entity Recognition (NER) 
can be between 0 and infinity.  

ents_f: harmonic mean of ents_p (precision) and ents_r (recall) and represents the overall performance of the 
model in identifying named entities. It is a common evaluation metric used for NER models.  

ents_p: proportion of true positive named entity predictions out of all predicted entities, and represents the 
precision of the model in identifying named entities. 

ents_r: proportion of true positive named entity predictions out of all actual entities in the dataset, and 
represents the recall of the model in identifying named entities.  

The value range of ents_p, ents_rl, and ents_f is between 0 and 100, where a score of 100 indicates perfect 
performance and a score of 0 indicates poor performance. 

In general, a good NER model should have a low tok2vec loss and NER loss, as well as high values for ents_f, 
ents_p, and ents_r. 

Figure 5a depicts the output of the training performance of the metrics explained above. The “E” represents an 
epoch, that refers to a complete pass through the entire training dataset during model training. During an epoch, 
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the model goes through all the training examples, makes predictions, and calculates the loss. The loss is then 
used to update the model's parameters through back propagation to improve the model's performance. After 
an epoch is completed, the model is evaluated on a separate validation/development dataset to determine its 
performance on data that it has not seen before. 

 

 
Figure 5a. spaCy’s model training performance 

Figure 5b presents the evaluation of the trained model for each entity based on the corpus evaluation dataset. 
Worth noting is that it seems like it could not identify related entities with body size and sampling devices. 

 
Figure 5b. spaCy’s model evaluation on evaluation dataset based on each entity 

 
Figure 5c. spaCy’s model evaluation on evaluation dataset based on each entity after dictionaries addition 
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Comparing Figure 5c metrics with metrics before the dictionary’s addition (Figure 5b), the precision has decreased 
and recall has increased which means that the model is identifying more true positives, but at the cost of also 
identifying more false positives. As is important to have accurate predictions, a higher precision may be more 
important than a higher recall. An example sentence that was predicted from both models, before and after 
dictionaries, extracted the same entities while in another one, the model with dictionaries had a better 
performance, as it recognised 2 more entities (see example 3 in section 2.3). It is observed that the entities 
“BODY_SIZE” and “SAMPLING_DEVICE” in this corpus had a precision and recall of 0. This can be attributed to 
the limited occurrence of these entities within the annotated corpus. 

The model was subjected to experimental testing to evaluate its performance accuracy in recognising relevant 
entities to the study's approach, marine species traits, and the results were satisfactory, demonstrating good 
performance in identifying the intended entities. 

4.6.2 RoBERTa 
Model roBERTa-base (Liu et al., 2019) was fine-tuned via spaCy 3 transformer and evaluated for the same 
corpus. The transformer architecture employed by the RoBERTa model incorporates multiple self attention 
layers, which endow the model with the ability to attend to different parts of the input sequence and capture 
complex relationships between words. During the training process, the self -attention loss, also known as 
transformer loss (loss trans in Figure 6a), is used to train the self attention layers of the model. The self attention 
loss computes the discrepancy between the output of the self attention layers and the target output for every 
token in the input sequence. This loss incentivises the model to learn to concentrate on the relevant parts of the 
input sequence and apprehend the relationships between words, which is of utmost significance for a multitude 
of natural language processing tasks. The remaining metrics that are exhibited are delineated earlier in the spaCy 
model. 

 
Figure 6a. RoBERTa’s model training performance 
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Figure 6b. RoBERTa’s model evaluation on evaluation dataset based on each entity. 

 
Figure 6c. RoBERTa’s model evaluation on evaluation dataset based on each entity after dictionaries addition 

 

Comparing Figures 6c metrics with metrics before the dictionary’s addition (Figure 6b), the precision has 
decreased and recall has increased which means again that the model is identifying more true positives, but at 
the cost of also identifying more false positives. Given the significance of precise predictions, a higher precision 
score may hold more importance compared to a higher recall score. In an instance where a sentence was 
predicted by both models - pre and post integration of dictionaries, the same entities were extracted. However, 
in Example 3 (G. R. Allen, 1998):, the model equipped with dictionaries appears to exhibit better performance as 
it detected two additional, almost true, entities. 

The trained model was put through experimental testing to assess its accuracy performance in recognising 
desirable entities in texts associated with marine species traits. The experimental results indicated that the model 
could identify the intended entities with good performance. 

4.6.3 BERT/BioBERT 
BERT (BERT-base-cased) and BioBERT (dmis-lab/BioBERT-v1.1) models were also fine-tuned for NER via spaCy 
3 transformers on the same corpus. Their performance during fine tuning is presented in Figures 7a and 7b. The 
final score (corresponds to the round up number of ENTS_F metric) of the BERT model is 0.35 when the BioBERT 
model has a final score at 0.31, when BioBERT needs more time to be fine tuned, as it takes more epochs.  
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Figure 7a. BERT model’s fine-tuning performance. 

 
Figure 7b. BioBERT model’s fine-tuning performance. 

The evaluation of the models was completed on the evaluation dataset before and after the dictionaries addition 
and the metrics based on each entity are presented in Figures 8a and 8b for BERT and Figure 9a and 9b for 
BioBERT, respectively. Both models, after adding the dictionaries, appear a precision decrease and recall increase. 
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Figures 8a (left) and 8b (right). BERT’s model evaluation on evaluation dataset based on each entity and BERT’s 
model evaluation on evaluation dataset based on each entity after dictionaries addition. 

  

Figures 9a (left) and 9b (right). BioBERT’s model evaluation on evaluation dataset based on each entity and 
BioBERT’s model evaluation on evaluation dataset based on each entity after dictionaries addition. 

BERT and BioBERT transformers were at first fine tuned for NER in PyTorch with custom scripts on the same 
corpus. Their performance during fine tuning for 20 epochs was evaluated with the accuracy and BERT’s accuracy 
was calculated to be 0.987, while BioBERT’s was 0.986. As demonstrated after 20 epochs, it was observed that 
BERT achieved a modest loss value on the training data while validating the acquired knowledge on the 
development dataset. In comparison with BioBERT, the latter appears to have a slightly lower loss in both 
scenarios, albeit without significant disparity. 

Although the models were tested for their performance in related examples and gave acceptable results, for the 
evaluating metrics it will be better to have the precision recall and F1 score metrics in order to compare them 
more efficiently with the other models, so they were fine tuned again via spaCy transformers with the above 
results. Another reason to proceed in a different approach was the dictionaries’ addition and the fine tuned 
models’ performance in recognising entities in example texts that was more accurate in the final way, while also 
the ability to save and load the fine tuned model with no time consuming. 

 

4.7 Summary 

A summary of the model’s usage is shown below: 

https://pytorch.org/
https://pytorch.org/
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Models Info Conflicts Time to build Computing 
resources 

 

BERT/BioBERT 

•The input training 
data must be in IOB 
format. 

 

•BERT takes about 
half an hour to be 
fine tuned with spacy 
transformers, while 
BioBERT needs more 
time. 

•For some reason it 
can’t identify as text a 
string like “word :” or 
“word at”, if text 
contains 2 word chars 
the second one needs 
to be more than 2 
characters long e.g 
“word for”. An attempt 
at fixing this constraint 
was done via a custom 
script. 

•Before the training 
process that takes 
about half an hour, the 
runtime for the 
installations required is 
about 10-15 minutes. 

•GPU and NVIDIA 9.2 
cuda library 

 

spaCy blank 
english model 

•The input training 
data have to be in 
spaCy NER training 
format. 

 

•Takes about half an 
hour to be trained in 
custom entity 
recognition. 

•In this study, due to 
UBIAI tool performance 
the IOB format 
annotations were used 
and converted into 
spaCy’s NER training 
format. 

•Before the training 
process that takes 
about half an hour, the 
runtime for the 
installations required is 
about 5 minutes. 

•CPU or GPU to make 
the training process 
faster. 

 

 

 roBERTa 

•The input training 
data have to be in 
IOB format. 

 

•Takes about half an 
hour to be fine tuned 
in custom entity 
recognition with 
spaCy transformers. 

. 

 

•For an unknown reason 
it cannot identify a 
string like “word :” as 
text or “word at”, if text 
contains 2 word chars 
the second one needs 
to be more than 2 
characters long e.g 
“word for”. It is almost 
fixed with a custom 
script. 

 

•Before the training 
process that takes 
about half an hour, the 
runtime for the 
installations required is 
about 10-15 minutes. 

•GPU and NVIDIA 9.2 
cuda library 

4.7.1 Related text examples  
Example 1 (IMachado et al., 2021): 

“Most marine fish and invertebrate species produce free and small early-stages which are part of the plankton. 
These incompletely developed individuals are highly vulnerable to unsuitable conditions like starvation and 
environmental variability, and it was early recognized that survival during these stages often regulates 
recruitment and adult population size (Cowan and Shaw, 2002), Pineda et al., 2007). Recruitment theories have 
thus focused on the environmental modulation of hydro survival, and they generally assume that while spawning 
occurs within relatively fixed time-frames along the year cycle, hydrographic conditions and plankton production 
show higher inter-annual variability.” 
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spaCy BioBERT BERT RoBERTa 

Distribution descriptors: 

marine, plankton 

Life stages: 

adult, larval 

Body size: 

size 

Distribution descriptors: 

marine, plankton 

Life stages: 

adult, larval 

Distribution 
descriptors: 

marine, plankton 

Life stages: 

adult, larval 

Distribution descriptors: 

marine, plankton, 
hydrographic 

Life stages: 

larval 

Body size: 

adult population size 

Example 2 (Tamaki A., 1985): 

“The maximum body length is 8 mm.” 

spaCy BioBERT BERT RoBERTa 

Body size: 

maximum body length, 8 
mm 

Body size: 

body length, 8 mm 

Body size: 

maximum body length, 8 
mm 

Body size: 

maximum body length, 8 
mm 

Example 3 (G. R. Allen, 1998): 

“They are inhabitants of shallow reef areas, usually encountered in less than 10 m depth. During the day they 
are mainly sedentary, frequently seen resting on the bottom under rock or coral outcrops on substrata 
containing substantial amounts of sand, silt, mud, or algae.” 

spaCy’s model without dictionaries could not identify algae. 

RoBERTa without dictionaries could not identify depth and sand. 

BERT without dictionaries could not identify depth sand and algae. 

BioBERT without dictionaries could not identify depth sand and algae. 

spaCy BioBERT BERT RoBERTa 

Distribution descriptors: 

shallow reef areas, 
depth, bottom under 
rock, coral outcrops, 
substrata, sand, silt, mud, 
algae 

Distribution descriptors: 

shallow reef areas, depth, 
bottom under rock, coral 
outcrops, sand, silt, mud, 
algae 

Distribution descriptors: 

shallow reef areas, 
depth, bottom under 
rock, sand, ‘silt, mud’ as 
one entity, algae  

Distribution descriptors: 

shallow reef areas, 
bottom under rock, 
depth, coral outcrops, 
substrata, sand, silt, 
‘mud, or algae’ as one 
entity 

 

4.8 Other tools for further exploration 

4.8.1 Stanza 

Stanza (Qi et al., 2020) is a well-known NLP library that was developed by Stanford NLP group. The library 
provides users with a wide range of pre trained models and tools for different NLP tasks, such as named entity 
recognition, part of speech tagging, dependency parsing, sentiment analysis, tokenisation, and more. Stanza is 

https://stanfordnlp.github.io/stanza/
https://stanfordnlp.github.io/stanza/
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built on PyTorch, a famous deep learning framework, and uses neural networks to achieve state of the art 
performance on various NLP tasks. It supports multiple languages, such as French, German, Chinese, English, 
and more, and comes with pre trained models for all of these languages. One of the benefits of Stanza is its easy 
to use API, making it simple for users to perform common NLP tasks. Additionally, the pre trained models of 
Stanza are intended to provide state of the art performance, making it a top choice for NLP tasks. The Stanford 
NLP group also regularly updates the library with new features and models, which shows its active development. 

Stanza's version 1.3.0 introduces a new architecture for named entity recognition (NER) known as the Semi-
Markov NER model. This model is an enhancement to the conventional BIO (beginning-inside-outside) tagging 
scheme that is commonly used in many NER models. It enables entities to have more complex structures, such 
as nested or overlapping entities. The Semi-Markov NER model is founded on a semi-Markov conditional 
random field (semi-CRF) architecture, which is an expansion of the conventional CRF that permits variable-length 
outputs, enabling complex structures for entities. The NER model comprises word embeddings, a bidirectional 
LSTM layer, and a Semi-Markov CRF layer. The word embeddings are learned representations of words in a 
sentence, which are then fed into the bidirectional LSTM layer, producing a sequence of hidden states that 
capture the context of the words. The Semi-Markov CRF layer models the dependencies between labels assigned 
to each word, allowing entities to have more complex structures. During training, the model is optimised to 
minimise the negative log-likelihood of the correct label and entity structure sequence using stochastic gradient 
descent or another optimisation algorithm. 

4.8.2 SparkNLP  
SparkNLP (John Snow Labs., 2022) is an open-source natural language processing library built on top of Apache 
Spark, designed for large scale distributed processing of text data. SparkNLP provides a variety of NLP tools, 
including named entity recognition (NER). SparkNLP's NER architecture is based on a deep learning model that 
uses a combination of bidirectional LSTMs and CRF layers. 

The architecture consists of the following components: 

1. Word embeddings: The input to the NER model is a sequence of word embeddings, which are learned 
representations of the words in the text. SparkNLP provides pre trained word embeddings, such as 
GloVe or Word2Vec, as well as the ability to train custom embeddings on user defined datasets. 

2. Bidirectional LSTM layer: The LSTM layer takes the word embeddings as input and generates a sequence 
of hidden states, which capture the contextual information of the words in the text. The bidirectional 
LSTM considers the context from both the left and the right of each word in the text. 

3. CRF layer: The CRF layer models the dependencies between the labels assigned to each token in the 
text. The CRF layer takes the output of the bidirectional LSTM layer as input and generates a probability 
distribution over the possible labels for each token. 

4. Training: During training, the model is optimised to minimise the negative log-likelihood of the correct 
label sequence, using stochastic gradient descent or another optimization algorithm. 

4.8.3 Apache OpenNLP  

This package provides an interface to the Apache OpenNLP library (Apache Software Foundation. (n.d.)), a 
machine learning toolkit for the most common NLP operations: part of speech tagging, named entity 
recognition, and coreference resolution. Other tasks that can be done include tokenisation, sentence 
segmentation, chunking, parsing, language detection and coreference resolution. Pretrained models for several 
European languages are included with OpenNLP. Users can even train their own models by using this toolkit. 
Maximum entropy and perceptron based machine learning are also included in OpenNLP. 

The Apache OpenNLP library contains several components, enabling one to build a full natural language 
processing pipeline. Sentence detector, tokeniser, name finder, document categorization, part of speech tagger, 
chunker, parser, and coreference resolution are some of the components that fall under this category. 
Components are made up of pieces that make it possible to perform the relevant natural language processing 

https://pytorch.org/
https://github.com/JohnSnowLabs/spark-nlp
https://opennlp.apache.org/
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task, train a model, and frequently also evaluate a model. With their respective application program interface, 
each of these facilities is reachable (API). Moreover, a command line interface (CLI) is offered for the convenience 
of training and conducting research. 

OpenNLP provides a NER module that uses statistical models to recognise named entities in text. To use 
OpenNLP for named entity recognition, a user needs to first download and install the library, which can be done 
by following the instructions on the OpenNLP website. Once OpenNLP has been installed, the NER module can 
be used to process text and extract named entities. 

4.8.4 Scikit-learn 
Scikit-learn (Pedregosa et al., 2011) is a popular open-source machine learning library for Python that includes 
a range of tools for various machine learning tasks, including natural language processing (NLP). 

Scikit-learn provides several tools for NLP, such as text feature extraction, text classification, and clustering. 
These tools can be used to pre-process text data, extract relevant features, and build models for various NLP 
tasks. 

Scikit-learn is primarily a machine learning library and does not provide a specific tool for named entity 
recognition (NER). However, scikit-learn can be used in conjunction with other NLP libraries such as spaCy or 
NLTK to build a named entity recognition model. 

  

https://opennlp.apache.org/
https://scikit-learn.org/
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5 Future work and Further improvements 
The proposed methodology for developing an accurate text mining model involves several steps. This feasibility 
study concludes that the most suitable models are SpaCy and BioBERT. To further enhance the accuracy of these 
tools, an enriched workflow is recommended consisting of the following four steps: a. Corpus Enrichment and 
Text Annotation, b. Combining GNfinder with an NLP library, c. Management of the text mining process and d. 
Visualisation of results. 

 

5.1 Corpus Enrichment and Text Annotation 
For the enrichment of the corpus and to improve the accuracy of our tool, we recommend annotating at least 
200 scientific documents and including them in the corpus. Specific annotation rules for traits entities must be 
followed to ensure that the text mining tool can identify all the desired entities. For instance, if we wish to train 
a model that can find all the biological traits, we must provide an annotated file that categorises all the relevant 
entities as biological traits. 

Forthis step, the open source Tecoholic Annotation tool can be used.  

Given the challenges highlighted in previous sections, it is suggested that a text annotation tool that 
possesses the following capabilities is implemented: 

6 Ability to take input files in text format. 

7 Possession of a user friendly interface suitable for non technical users. 

8 Ability to store progress made during the annotation process and output results in a suitable annotation 
scheme, such as TSV in IOB format, spaCy-NER format, among others. 

 
Figure 10. Text Annotation 

5.2 Combining GNfinder with an NLP library 
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For this step, the use of GNfinder is proposed for identifying the scientific names of species. Custom scripts and 
a trained NER model can be used to match the extracted entities with the corresponding species in a text. 

 

5.3 Management of the text mining process 
Regarding the management of the Text Mining Process, the use of MLflow is recommended, which is an open-
source platform designed to manage and deploy machine learning models. MLflow offers comprehensive 
lifecycle management, from data preparation to model deployment, allowing for the tracking of performance 
metrics of different machine learning models trained on the text data. Furthermore, it can log the 
hyperparameters used during the training process and facilitate model evaluation through cross validation or 
holdout validation. The performance of each model can be tracked, and the best one can be selected. MLflow 
also provides a user-friendly interface to manage and deploy machine learning models. 

 

5.4 Visualisation of results 
Regarding the visualisation of results, an improved approach is proposed in presenting the outcome of the text 
mining process. Instead of producing a table of results with corresponding positions in the provided text, it is 
suggested that the final text with highlighted annotated words is exported. This implementation holds 
considerable importance for the scientific community, as the data curator can visualise into text the desirable 
information. 
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6 Online training session 
Α training session was organised on the 20th of March 2023, in the framework of EMODnet Biology, specifically 
focusing on the ongoing Feasibility Study on Ecological Traits and sampling devices/methodologies 
identification with text mining. This training session focused on the interdisciplinary field of text mining and its 
application on marine ecological traits. During the session, which was advertised through the EMODnet portal 
Training session in the framework of the EMODnet Biology Phase IV on the feasibility study for recognition of 
specific ecological traits and sampling devices/methodologies in text | European Marine Observation and Data 
Network (EMODnet) (europa.eu);  social media as well as the github of the Open Traits Network 
https://github.com/open-traits-network/open-traits-network.github.io/issues/253; participants received an 
overview of state of the art text mining technologies and bioinformatic tools. 

The session began with training participants on literature curation workflows, standards, and resources. 
Participants prepared their own literature and followed the workflow to extract information on traits and species 
names. Using machine learning algorithms and tools, they evaluated the results and provided feedback on the 
user interface, usability, and feature requests. Thus, the participants had a unique opportunity to work on the 
complete workflow from literature preparation to data analysis. Programming was a key part of the session, 
during which an introduction on how to process data from raw text to the application of algorithms for text 
mining took place. 

The number of registrations for the training amounted to 32 and the participants hailed from the following 
Institutes/Organisations: 

1. Ionian University, Department of Environment 

2. Institute of Oceanography, Hellenic Centre for Marine Research 

3. Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research 

4. Spanish institute of Oceanography 

5. Instituto de Hidráulica Ambiental de la Universidad de Cantabria 

6. Vlaams Instituut voor de Zee (VLIZ) and Flanders Marine Data Centre (VLIZ-VMDC) 

7. University of Salento 

8. University of Crete 

9. State Key Laboratory of Estuarine and Coastal Research 

10. Centre for Environment, Fisheries and Aquaculture Science (CEFAS) 

11. The Journal of Life & Environmental Sciences 

12. European Marine Biological Resource Centre (EMBRC) 

13. Portuguese Institute for Sea and Atmosphere (IPMA) 

14. Campus dei Licei Massimiliano Ramadù 

The agenda of the training session is available via the link, along with the presentations via the link and the 
recorded file via the link. 

https://emodnet.ec.europa.eu/en/training-session-framework-emodnet-biology-phase-iv-feasibility-study-recognition-specific
https://emodnet.ec.europa.eu/en/training-session-framework-emodnet-biology-phase-iv-feasibility-study-recognition-specific
https://emodnet.ec.europa.eu/en/training-session-framework-emodnet-biology-phase-iv-feasibility-study-recognition-specific
https://github.com/open-traits-network/open-traits-network.github.io/issues/253
https://mda.vliz.be/directlink.php?fid=VLIZ_00000708_642fb541462d3265669157
https://mda.vliz.be/directlink.php?fid=VLIZ_00000708_642fb541460b0633179501
https://mda.vliz.be/directlink.php?fid=VLIZ_00000708_642fb54146248723971708
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Figure 11. Picture taken through the practical session 
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8. Appendix 

8.1 Installations 

8.1.1 Gnfinder 
The detailed documentation of Gnfinder (Mozzherin et al., 2023) is developed in the following link:  

https://github.com/gnames/gnfinder/blob/master/README.md 

Step-by-Step Installation Instructions: 

1. Use this link to download the .exe file. 

https://github.com/gnames/gnfinder/releases 

  Execute the following commands to install Gnfinder as command line app in Windows: 

    mkdir C:\bin 

    copy path_to\gnfinder.exe C:\bin 

2. C:\bin directory to PATH environment variable 

3. The following command will run Gnfinder for the test.txt file and the product will be a tsv file: 

    gnfinder test.txt -f tsv 

4. At the first run of Gnfinder, a configuration file (gnfinder.yml) will be created and it will be located in 
C:\Users\AppData\Roaming\gnfinder.yml in windows. 

5. Finally, the following command will start gnfinder as a web-application and an API server on port 8080 
(http://localhost:8080/) for use: 

 gnfinder -p 8080 

8.1.2 BRAT 
Brat is a web-based tool for annotation, visualisation and editing of texts. The tool is open source and free to 
use. Brat is especially designed for structured annotation, where the notes are not free text but have a fixed form 
that can be automatically processed and interpreted by a computer (Stenetorp et al., (n.d.)). 

The Brat server is implemented in Python, and requires the version 2.5, while the installation script assumes a 
UNIX-like environment. 

Step-by-Step Installation Instructions for a standalone server: 

1. Step-by-step installation instructions for a standalone server: 

2. Install Visual Studio and then WSL on your Windows machine and choose a Linux distribution. 

3. Open the Visual Studio and choose the WSL terminal in the Linux distribution you have installed. 

4. Download the latest version of BRAT from the official website (https://brat.NLPlab.org/). 

5. Run the installation script in “unprivileged” mode: 

  ./install.sh -U  

6. Finally, start the standalone server with the command: 

  python standalone.py 

Notes: 
In order to add data, the .txt files must be placed in the data folder and then create an empty .ann file for each 

https://github.com/gnames/gnfinder/blob/master/README.md
https://github.com/gnames/gnfinder/releases
http://../bin
http://../bin
http://localhost:8080/
https://brat.nlplab.org/
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.txt file uploaded. 

For the configuration files see brat configuration. Configuring a new corpus is a bit challenging. 
Each annotation project typically defines its own annotation.conf (where placed: entities, relations, events, 
attributes). Lastly, defining visual.conf, tools.conf and kb_shortcuts.conf is not necessary, and the system falls 
back to simple default visuals, tools and shortcuts if these files are not present. 

8.1.3 spaCy 
spaCy (Honnibal et al., 2017) is an open-source software Python library used in advanced natural language 
processing and machine learning. It is used to create systems for information extraction, NLU, and text 
preprocessing prior to deep learning. It provides many built-in features, including deep neural networks. 

For the installation (https://spaCy.io/usage). 

spaCy is compatible with 64-bit Python 3.6+ and runs on Unix/Linux, macOS/ OS X and Windows. 

Step-by-Step Installation Instructions: 

1. Open your terminal or command prompt and run the following command to install spaCy: 

   pip install spaCy 

2. After the installation is complete, run the following command to download the English language model: 

   python -m spaCy download en_core_web_sm 

3. Verify the installation by running a test script in Python with the commands: 

  import spaCy 

  NLP = spaCy.load("en_core_web_sm") 

  doc = NLP("Hello, world! This is a test.") 

  for token in doc: 

      print(token.text) 

8.1.4 NLTK 
Natural Language Toolkit (NLTK) (Bird et al., (n.d.)) is a popular Python library for working with human language 
data. It offers a variety of information and tools for natural language processing (NLP) activities. 

One of the Python versions 3.7, 3.8, 3.9, 3.10, or 3.11 is necessary for NLTK. 

For Windows users, the following guide will be useful for the installation of Python 3:  

https://docs.python-guide.org/starting/install3/win/#install3-windows 

Step-by-Step Installation Instructions: 

1. First, run the following command to install NLTK: 

python -m pip install NLTK == 3.5  

2. The following commands will download collections, models and corpora: 

import NLTK  
 NLTK.download()  

System requirements: NLTK is a comprehensive library and as such, it may require additional memory depending 
on the specific task, dataset or the complexity of the pipeline. 

For the installation of transformers in python run the command:  

 pip install spacy-transformers 

https://brat.nlplab.org/configuration.html#configuration-basics
https://docs.python-guide.org/starting/install3/win/#install3-windows
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After spacy-transformers are installed, users can select the ‘bert-base-cased’ transformer, for example to fine 
tune it with spacy can be placed in the spacy configuration file. 

The usage is the same as for BERT, but instead of the BERT-base-cased model, the dmis-lab/BioBERT-base-
cased-v1.1 model is pre-trained for BioBERT. 
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