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1 Introduction 

In this report we give an overview of data products developed within EMODNET Biology, and clarify some 

novel modelling approaches that have been used to derive these products. We first discuss the general 

approach of selecting use cases based on Essential Ocean Variables. Subsequently we illustrate different 

products filling most of the categories mentioned. We then discuss the modelling approaches applied and 

end with a discussion of further developments and uses. 

1.1 Sustaining GOOS Biological Essential Ocean Variables 

GOOS (Global Ocean Observing System) has defined Essential Ocean Variables, a minimum set of 

information needed to monitor and manage the world’s oceans. Within GOOS the Biology and Ecosystems 

Panel has identified a number of Variables on plants, animals, habitats and ecosystems that form the 

biological core of this system. 

Currently, a set of EOVs for biology and ecosystems has been identified, and the process of validation, 

integration across disciplines and implementation of a mature, sustainable ocean observation 

programme is in progress. EMODNET Biology aims at contributing as much existing data as possible on 

European ecosystems to this programme. The availability of historic data is a prerequisite for validation 

of the approach, and moreover lends a historic perspective to future observation programmes. 

The GOOS Biology and Ecosystem Essential Ocean Variables are illustrated in Figure 1. They concern six 

functional groups, ranging from microbes to marine mammals, and four habitat types of special 

importance. EMODNET data (in Biology and Habitats) cover most of these functional groups and habitats. 

Notable exceptions are microbes, that are poorly covered in the EMODNET databases. Very few data are 

available on turtles, corals and mangroves, because these are not frequently found in European waters. 

 

 

Figure 1. GOOS Essential Ocean Variables for Biology and Ecosystems 
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1.2 EOVs in the Atlas of European Marine Life 

The EMODNET Biology Atlas of European Marine Life (http://www.emodnet.eu/launch-emodnet-atlas-

european-marine-life) currently illustrates products on most of the topics covered by the EOVs. The Atlas 

of Marine Life conforms to the FAIR principles (Findable - Accessible - Interoperable - Reusable). All data 

are open and the methodologies used in the creation of the data products are shared in the EMODNET 

software repository (https://github.com/EMODnet). In this report we will illustrate some data products 

and the underlying models and methodologies, in order to document the current portfolio of applied 

methods. We refer for details to the description of the different products in the EMODNET portal for the 

Atlas (http://www.emodnet-biology.eu/about-atlas). 

For phytoplankton, the EMODNET database contains few spatial datasets. A French coastal dataset aimed 

at the detection of harmful algal blooms is used as an example. Many long-term datasets are based on 

sustained observation at a single location. An example of the LTER site at Trieste, Italy, is used as an 

example. In this dataset we illustrate the use of a simple exploratory data model that increases insight in 

the main trends in the community. Many other long-term sustained observations are closed-data and as 

such not part of the EMODNET open database. 

For zooplankton, we used a long-term single-location observatory in Villefrance, France as an example 

dataset. In this dataset, the main interpretation problem was the identification of false zeroes: species 

that were absent from the database but were not actively looked for during the observations. As the 

sampling and sorting effort varied over time, comparison of different series was needed in order to 

distinguish false from real zeroes. Other zooplankton datasets do have strong spatial (as well as temporal) 

components. We used the Continuous Plankton Recorder data of the North Atlantic as an example of a 

long-term dataset, with which we illustrated long-term large-scale changes in species distribution. We used 

a dataset on zooplankton from the Baltic Sea, composed of Swedish, Finnish, German and Polish datasets, 

to illustrate multi-year variability and, in addition, the use of environmental variables to better interpolate 

the species’ distributions. 

An extensive data collation of macrozoobenthos in the North Sea, North Atlantic and Baltic Sea was made. 

This dataset was used to illustrate the use of biological traits as a mechanism to summarize the 

composition of the community. Currently, a derived product is being compiled, aiming at the estimation 

of benthic bioturbation potential, a variable that is of high importance for the biogeochemistry of 

(especially shallow) seas. 

Large and systematic databases of fish are available through ICES and form part of the EMODNET 

database. We illustrate the use of biological traits to demonstrate trends of different functional types of 

fish over the past decades in the North Atlantic. 

A database on marine turtles in the Azores is used to illustrate EMODNET data on this group. In general, 

as is the case for birds and marine mammals, the most extensive datasets are curated by groups engaging 

many volunteers. Recent data are rarely available for inclusion into EMODNET, but co-operation with the 

curating groups is sought to include their results into the Atlas. Mostly older data on birds in the North Sea 

are used as a data product illustrating time evolution in a number of typical species. Data holdings on 

marine mammals in EMODNET are currently too sparse to be included as a product. 

Data on habitats of special significance are curated by EMODNET Habitats. This group has co-operated in 

the production of the Atlas of Marine Life. We illustrate their results with maps of seagrass along European 

coasts. 

 

http://www.emodnet.eu/launch-emodnet-atlas-european-marine-life
http://www.emodnet.eu/launch-emodnet-atlas-european-marine-life
https://github.com/EMODnet
http://www.emodnet-biology.eu/about-atlas
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1.3 Modelling tools used in the EMODNET Biology Products 

A large part of the work in preparing EMOCNET Biology products is invested in cleaning the data sets. Even 

after taxonomic checks using WoRMS (http://www.marinespecies.org/) many taxonomic problems remain, 

as different observers are not always consistent in the level of taxonomic resolution or chose different 

higher taxa. Moreover, reconciling different sampling methodologies, different units for reporting, or 

changing taxonomic expertise in the course of a long-lasting time series, all cause breaks in the time series 

or spatial patterns that require close consideration before a product can be presented. We consider this 

work as an essential part of the EMODNET Biology task. 

In preparing the products, we also had to recur to different forms of modelling in order to make useful 

products. The basic method for spatial dataset is gridding using DIVA (ref). Where spatial coverage of the 

data is sufficient, this is our method of preference, as it adds as little interpretation and modelling as 

possible to the output. We assume that EMODNET data products will be used by others in more 

sophisticated modelling applications, for the calculation of indicators or other derived statistics, and that 

the provision of well-controlled data is the essence of the EMODNET contribution to that work. 

We did add several modelling components to the product, where this was needed to obtain interpretable 

products. A first example concerns the improvement of gridded maps of zooplankton in the Baltic. We 

used data on salinity and other environmental variables to interpolate between sparsely distributed 

sampling points across the Baltic. A second example concerns a first-stage interpretation of time series of 

phytoplankton (LTER site of Trieste), where we used multivariate analysis to illustrate how different species 

contributed towards the two dominant trends in the community, one related to seasonality and the other 

to long-term changes caused by eutrophication pressure. A third example concerns the modelling of 

thermal sensitivity of marine taxa. These approaches will be presented as part of the portfolio in section 

3. 

 

2 Portfolio of data products 

2.1 Overview 

An overview of EMODNET Biology data products is provided in Table 1, based on Lear et al. (subm.). Note 

that in this table a number of data products (e.g. maps of turtles and bird species) have been lumped in 

the section ‘abundance aps of various species or groups’. The overview shows that most products can 

serve as input to the management of diverse issues. This general-purpose nature of the EMODNET 

products is very important. It implies that the products have minimal interpretation in their generation 

and can be used in diverse application with dedicated methods. The fact that further processing may be 

needed for practical applications is one of the main reasons to make the data processing fully transparent, 

with full availability of the intermediate processing steps and data sets. 

Full details of the data products and graphical representations are available from http://www.emodnet-

biology.eu/about-atlas. 

Lear et al. (subm.) discuss the integration level of the different products, as well as the audience and 

potential use of the products in full detail. This discussion will not be repeated here. 

 

 

 

 

http://www.marinespecies.org/
http://www.emodnet-biology.eu/about-atlas
http://www.emodnet-biology.eu/about-atlas
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Table 1: Portfolio of EMODNET Biology data products. Based on Lear et al. (subm.) 

Product 

Supported 

EOV + 

Audience 

Impact/Importance Issues 

Gridded abundance 

maps of various 

species/groups 

All EOVs 

Evolution and distribution 

of key species/species 

groups. 

Marine Spatial planning, 

Fisheries,  

Habitat specifications 

Neural network 

modelling of Baltic 

zooplankton 

abundances 

Zooplankto

n 

abundance 

Predicted gridded 

abundance maps of 

zooplankton in Baltic Sea, 

based on multiple sampling 

campaigns and using 

environmental information 

for abundance modelling 

Marine Spatial planning, 

Eutrophication, 

Invasive Species 

Distribution of fish 

living modes in 

European seas 

Fish 

abundance 

and 

distribution 

Distributions of the main 

functional types of benthic 

and bentho-pelagic fish 

species. 

Marine Habitats specification 

Fisheries policies 

Distribution of benthic 

macroinvertebrate 

living modes in 

European seas 

Benthic 

invertebrate 

abundance 

and 

distribution 

Distributions of the main 

functional types of benthic 

macroinvertebrates 

Marine Habitats specification 

Fisheries policies, related to 

fishing pressure on benthos  

Eutrophication 

Thermal affinities for 

European marine 

species 

All EOVs 

Shows temperature and 

vulnerability to 

temperature change of 

species. 

Global change effects on marine 

ecosystems 

OOPS - Copepods: ICES 

Operational 

Oceanographic 

Products and Services - 

Gridded Copepod 

abundance data 

Zooplankto

n biomass 

and 

diversity 

Zooplankton data of 

Continuous Plankton 

Recorder in N.Atlantic, used 

to illustrate temporal 

change in spatial patterns. 

ICES uses this product in 

their Operational 

Oceanographic Products 

and Services (OOPS) 

Global change, regime shifts in 

marine ecosystems 

Invasive marine species 

occurring in European 

marine harbours 

All EOVs 

Use EMODNET Biology and 

EUROBIS occurrence data 

of invasive species to check 

for false negatives in 

samples of invasive species 

in harbours 

Basis for ballast water policy,  

Exemption policy from ballast 

water checks 
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Temporal trend of 

invasive species 

Marenzellaria in the 

Baltic Sea 

Benthic 

invertebrate 

abundance 

and 

distribution 

Temporal trend of invasive 

species 
Invasive species 

Phytoplankton 

community analysis in 

the Northern and 

Middle Adriatic  

Phytoplankt

on 

community 

composition 

Show temporal patterns in 

species and species groups, 

and interpret in terms of 

seasonality and long-term 

trend 

Eutrophication 

Pollution 

Temporal trend of algal 

toxicity along the 

French coast 

Phytoplankt

on 

community 

composition 

Show spatio-temporal 

distribution of toxic algae 

along French coast 

Eutrophication 

Pollution 

Long term zooplankton 

time series analysis 

from Villefranche, 

Western 

Mediterranean 

Zooplankto

n biomass 

and 

diversity 

Show temporal patterns in 

species and species groups, 

and interpret in terms of 

seasonality and long-term 

trend 

Eutrophication, 

Pollution 

 

  

2.2 Main data processing steps 

Table 2 illustrates, for the different data products, what type of data sets the product was based on. It also 

specifies the necessary data clean-up and modelling steps that were needed to prepare the product. Data 

sets vary from well-prepared combined data sets that were curated by external parties, over compilation 

of individual researchers’ data set into combined products, to the application of a ‘big data’ approach on 

the complete OBIS database.  

 

Table 2: Data processing and modelling for the EMODNET Biology product portfolio 

Product Data base Clean-up steps Modelling 

Gridded abundance 

maps of various 

species/groups 

Compiled data bases 

curated by external 

parties (e.g. JNCC) 

None DIVA gridding 

Neural network 

modelling of Baltic 

zooplankton 

abundances 

National databases of 

Swedish, Finnish, 

Polish and German 

national data centers 

Within and between data 

sets: taxonomic coherence, 

units of measurement, field 

methods 

DIVA with neural 

network model for 

influence of external 

variables 

Distribution of fish 

living modes in 

European seas 

ICES database, curated 

by ICES 

Elimination of species not 

properly sampled by the 

applied methods 

Compilation of trait 

database. Grouping 

of species in 
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functional groups. 

DIVA gridding 

Distribution of benthic 

macroinvertebrate 

living modes in 

European seas 

Data sets delivered by 

individual researchers 

or researcher groups 

Taxonomic coherence. 

Elimination of data not 

sampled with compatible 

devices. Unit conversions. 

Compilation of trait 

database. Grouping 

of species in 

functional groups. 

DIVA gridding 

Thermal affinities for 

European marine 

species 

OBIS occurrences 

database 
None 

Derivation of thermal 

affinities based on 

occurrence patterns. 

Calculation of 

sensitivities to 

temperature change 

OOPS - Copepods: ICES 

Operational 

Oceanographic 

Products and Services - 

Gridded Copepod 

abundance data 

Continuous Plankton 

Recorder 
None 

Grouping of data per 

season and time 

period. DIVA gridding. 

Basic time series 

analysis per species. 

Invasive marine species 

occurring in European 

marine harbours 

OBIS occurrences 

database 

None, except selection of 

appropriate species and 

spatial extent 

Qualitative 

comparison of OBIS 

results to harbour 

database. 

Temporal trend of 

invasive species 

Marenzellaria in the 

Baltic Sea 

Swedish, Polish, 

German, Finnish 

national data bases 

Unit conversions.  

Grouping of data per 

time period. DIVA 

gridding 

Phytoplankton 

community analysis in 

the Northern and 

Middle Adriatic  

Single data set of Long 

Term Ecological 

Research Site 

Taxonomic coherence 

within a single long-term 

data set. Lumping of 

species to appropriate level 

of resolution 

Multivariate time 

series analysis 

Temporal trend of algal 

toxicity along the 

French coast 

IFREMER data set, 

curated by IFREMER 

Selection of HABs from 

phytoplankton database, 

using trait information in 

WoRMS 

DIVA gridding 

Long term zooplankton 

time series analysis 

from Villefranche, 

Western 

Mediterranean 

Diverse datasets 

within a single 

institution 

Taxonomic coherence. 

Lumping of species. 

Distinguishing between 

false and real zeroes. 

Combination of some data 

sets 

None. Cleaned time 

series are shown. 
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3 Portfolio of data modelling approaches 

In this section we describe the data modelling approaches that were applied in the current EMODNET 

Biology products. In principle, we have a much broader portfolio of methods, expertise and software 

available, but the aim of this section is not to review the current literature. 

In selecting methods for application in EMODNET products, we have attempted to minimize the amount 

of interpretation and model-based filling of gaps in the observations. Wherever possible, we have used 

simple gridding of the available data to show in the first place what the available data tell us about fauna, 

flora and ecosystems. However, in a number of applications this was not sufficient. Either data were too 

sparsely distributed in space or time, or too complicated in taxonomic resolution to be easily interpreted. 

In those cases we have enriched the products with modelling approaches. An example is the Baltic 

zooplankton dataset, where sampling stations are unequally distributed over the Baltic Sea, and large 

areas are left for interpolation. Knowing that salinity is one of the major structuring factors for community 

composition in the Baltic, we found that using this information greatly improved the reliability of the 

gridded maps. We subsequently involved other environmental variables to test if further refinement was 

possible.  

3.1 DIVA gridding 

The preparation of gridded maps with the DIVA (Data-Interpolating Variational Analysis) software 

(https://github.com/gher-ulg/DIVAnd.jl/) is the de facto standard in the different EMODNET lots. In 

EMODNET Biology, we followed this standard. DIVA is extensively described in several publications and 

will not be detailed here. In short, DIVA is a method designed to efficiently interpolate in situ 

measurements onto a regular grid. In general terms, the variational inverse methods aim to derive a 

continuous field which is close to the observations (it should not necessarily pass through all observations 

because different types of errors affect them) and “smooth” (i.e. small first and second derivatives), as it 

has to represent climatological fields. 

3.2 Kriging with dependence on a single environmental factor 

For the gridding of Baltic zooplankton a problem was posed by the application of DIVA as a gridding 

method. The spatial gaps between the observations are in some places relatively large. DIVA indicated 

large uncertainty of the interpolation values in these areas. That results, following standard procedures, 

in blanking the areas where the gridding is uncertain. 

In a first modelling effort, we applied kriging with a linearizable co-factor. In this approach, first a non-

linear, but linearizable response model of the abundance of the species on salinity was fitted by GLM. 

Subsequently, the residuals of the observation from this model were subjected to kriging interpolation 

and added to the response model. The resulting interpolation values take into account the spatial 

distribution of salinity, which is a master factor for the spatial distribution of species in the Baltic Sea. An 

example of this approach is shown in Figure 3. The response model is illustrated in the top-left graph. The 

fitted variogram is illustrated in the top right graph. The other pictures in Figure 3 illustrate the 

interpolated distribution of the species in subsequent years. For most species, we see relatively little 

variation in the spatial distribution from year to year, and in general a good correspondence between the 

interpolation and the observations. Note that the actual observation points were no interpolation points, 

so that deviation between observation and interpolation is, in principle, possible. However, the 

interpolation will be drawn to the observations. This may result in strongly varying patterns from year to 

year, even if the salinity field is relatively constant. Such fluctuations were, however, rarely seen. 
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A disadvantage of this approach is that it does not use DIVA gridding and in that sense deviates from most 

EMODNET products. DIVA interpolation has a number of distinct advantages for application in areas such 

as the Baltic Sea, as it does not interpolate across islands and other restrictions for the water. Also, 

consistency between different products increases the comparability and usability of EMODNET products. 

We therefore developed an approach using DIVA, but taking into account external variables to guide the 

interpolation. 
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Figure 3. Interpolation of the abundance of Centropages hamatus in different years in the Baltic. The top left 

figure shows the fitted response curve between abundance and salinity; the top right curve shows the variogram 

fitting. The other panels give the interpolated abundance for subsequent years. Observation points have a 

different shape dependent on the data source (four different countries) and are filled with the same colour 

scheme as the interpolation 

 

3.3 DIVA interpolation using information from environmental 

variables 

DIVAnd is essentially a mono-variate reconstruction method (i.e., one variable is interpolated at a time). 

We describe here how the method can be extended to use other related variables (called the covariables) 

to help improve the interpolation.  

 

The multivariate analysis of a variable x with a list of covariable z1, z2, … is expressed as follows: 

 
𝑥 = 𝑥′ + 𝑓(𝑧1, 𝑧2, … ,𝑊1, 𝑏1,𝑊2, 𝑏2, … ) 

where f is a non-linear function of the known covariables and unknown parameters W1, b1, W2, b2, .... The 

structure of the function f is given here by a neural network. The multilayer perceptron, a class of 

feedforward artificial neural network, is employed. Such a model consists of one input layer, one output 

layer, and at least one hidden layer. 

The field x’ is also unknown. Its spatial structure is constrained by DIVAnd. 

3.3.1 Neural network 

For every location j, the initial values of vector v1 are the co-variables at the location j. This vector is linearly 

transformed by a weight matrix Wk and an offset vector bk, and then a non-linear activation function (here 

rectified linear unit, ReLU) is applied to each element element of the resulting vector (except for the last 

step). 

𝑣𝑗
(𝑘+1)

= 𝑔(𝑘+1) + 𝑓(𝑘)(𝑊𝑘𝑣𝑗
(𝑘) + 𝑏𝑘) 

 

Here, the weights Wk and bk do not depend on space directly, but the longitudes and latitudes are selected 

as covariables. 

3.3.2 Experiments with synthetic observations 

The test is prepared as follows (Figure 4): 

1. Create a series of random field which are the “co-variables”. 

2. Create synthetic observations by combining these covariables to generate the “true field”. 

3. Sample these fields at random locations to get the “synthetic observations”. 

4. Perturb these co-variables as they are not perfectly known in practice. 

5. Try to recover the true field from the synthetic observation using the imperfectly known 

covariables using the neural network. 
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Figure 4. Illustration of the test with synthetic data. The True Field is calculated as a function of a number of 

environmental variables. The field is sampled at random locations, and the sampled values are perturbed. 

Subsequently the interpolation routing re-estimates the field, yielding the estimated field as shown in the 

lowermost picture. This estimated field corresponds closely to the true field above. 

3.3.3 Logistic regression problem 

 

We use the equations: 

p(Model 1 | obs.) = 0.9 x 0.7 x (1 − 0.1) = 0.57 

p(Model 2 | obs.) = 0.3 x 0.1 x (1 − 0.3) = 0.02 

 

Figure 5. Illustration of the models used in the logistic regression problem 
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This leads to a similar problem as the previous case, except that here the true field represents a probability 

of occurrence. Here the synthetic observations are binary (occurrence or not). The cost-function to 

minimize is based on the negative log-likelihood (i.e. find the model which maximize the probability of the 

observations). 

 
Figure 6. Logistic regression problem. The True field is expressed as a probability of occurrence. The samples are 

binary (present/absent) depending on the probability of occurrence. Based on the samples, the field is 

reconstructed as the estimated field. 

3.3.4 Application to real data 

A realistic application is developed with the objective to generate a gridded data product for 40 

zooplankton species. The tools employed are DIVAnd for the spatial interpolation and Knet (in Julia) as 

the neural network library. 

The main dataset consists of zooplankton observations in the Baltic Sea, obtained from four national data 

collections (Sweden, Finland, Germany and Poland), as used before in the kriging with co-variables. In 

contrast to the previous analysis, the neural network uses several co-variables as input: 

 Dissolved oxygen concentration (from EMODnet Chemistry) 

 Salinity (from SeaDataCloud) 

 Temperature (from SeaDataCloud) 

 Chlorophyll concentration (from MODIS Aqua satellite) 

 Bathymetry (from GEBCO) 

 the distance from coast (from GSFC, NASA) 

 the position (latitude and longitude) and the year. 

https://github.com/gher-ulg/DIVAnd.jl
https://github.com/denizyuret/Knet.jl
http://www.emodnet-chemistry.eu/welcome
https://www.seadatanet.org/
https://www.seadatanet.org/
https://oceancolor.gsfc.nasa.gov/l3/
https://www.gebco.net/
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The fields represent the yearly average abundance. For every species the correlation length and signal to 

noise ratio are estimated using the spatial variability of the observations. 

3.3.5 Results 

The interpolated fields (here we show as an example Acartia (Acanthacartia) bifilosa for the year 2007) show 

good agreement with the observations and the cross-validation data points. The observations (inside 

white circles) are overlaid on the gridded field to allow a direct, visual comparison.  

In addition, complex spatial dependencies could be learned from the covariables. 

 

 

Figure 7. Left: the result of the field estimated using DIVA with NN. For comparison the field estimated with kriging 

using salinity as a co-variable is shown right. Note the difference in the colour scales used for the two figures. 

   

For comparison, we show the result of the kriging with salinity as a co-variable for the same species and 

year in Figure 7. Please note the different color scheme in this figure. In comparison with the kriging result, 

the interpolated field of the NeuralNetwork – DIVA shows more differentiation, especially in the Baltic 

proper where the qualities of the water are followed closer. Many points have about equal 

correspondence with both interpolation methods, but sample points close to the German and Polish coast 

suggest that the features revealed by the DIVA interpolation coincide much better with the variations in 

the observations. This was generally observed in the results, adding credibility to the results of this 

interpolation. 

We conclude that the Neural network can extract non-linear relationships useful to generated gridded 

data products. We present essentially a multivariate extension to DIV And where the dependency to other 

variables (“covariables”) are estimated from the observations. Tests with synthetic data show that the 

underlying true field can be reconstructed from observations, even when the covariables are not perfectly 

known. The technique was also to abundance of 40 zooplankton species in the Baltic. The gridded dataset 

for all 40 species is available at http://www.emodnet-biology.eu/. 

 

http://www.emodnet-biology.eu/
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3.4 Summarizing temporal trends in multi-species time series data 

Time series of plankton, such as the LTER series at Trieste, contain a large number of taxa, with a large 

diversity of trends in time. Presenting such time series in a compact but informative way is a major 

challenge. We developed an interactive R Shiny application for the time series, in which we show in one 

page the time evolution of the yearly variation in species abundance over the many years of the time 

series, and the seasonal pattern of occurrence, averaged over the years. 

In a second page we summarize the information making use of a basic multivariate analysis. Based on a 

Principal Component Analysis (PCA) of the double-sqrt transformed abundances, we plot the many species 

as arrows in the biplot, to which we add in addition the centroids of the years and of the months. This 

picture summarizes the two main trends in the data: the long-term change in species composition, a 

process mostly determined by eutrophication status of these coastal waters, and the seasonal pattern of 

species succession. By selecting one taxon, the arrow of the taxon is highlighted in green and compared 

to all other arrows in grey. By selecting a group (e.g. all diatoms), all taxa belonging to the group are 

highlighted. 

Figure 8 shows an example for the genus Cyclotella. The time series of yearly observations clearly shows 

that the abundance of the genus has been increasing over time, especially since 2009. The genus is mainly 

dominant in May-June. 

In the multivariate plot, the arrow of the genus clearly points in the direction of the later years in the time 

series (time trend goes from right to left on the plot. The arrow is parallel to the x-axis, indicating that it 

occurs in the middle of the seasonal trend. The months are indicated in blue. Spring is on top, Autumn is 

below, summer is in the middle. 

The interactive tool is available at http://www.emodnet-biology.eu/phytoplankton-community-analysis-

northern-adriatic 

 

http://www.emodnet-biology.eu/phytoplankton-community-analysis-northern-adriatic
http://www.emodnet-biology.eu/phytoplankton-community-analysis-northern-adriatic
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Figure 8. Example output of one taxon of the LTER Trieste dataset 

4 The use of species traits to summarize large 

databases 

Not all species are similar. They are characterized by a number of traits, e.g. size, age at maturity, number 

of offspring produced, type of locomotion, type of feeding, etc. These traits largely determine under which 

environmental conditions they will thrive. Species that mature early and produce a large number of rapidly 

dispersing offspring, as an example, are well adapted to temporary environments, e.g. patches that have 

become vacant after some disturbance. Their offspring will easily reach these patches, and develop fast 

to dominate the community in early stages. However, traits are correlated, and species cannot be good at 

everything. The rapidly dispersing, fast growing species will typically be poor competitors when resources 

are scarce, thus will be outcompeted by other species when the disturbed patch that they occupied early 

is maturing into a more stable community. 

The main advantages of trait-based approaches are multifold. By abstracting from species identity, they 

facilitate comparison across biogeographic zones, as different species with similar traits may occupy 

similar niches in different zones. Second, many species traits are related to the type of temporal variability 

dominating their environment. As an example, in macrobenthos three distinct groups were found that are 

characterized by their differential response to stress patterns in their environment. The first one 

comprises species resistant to physical stress in natural conditions through a strong mobility, a short life 

cycle and a high offspring survival probability. The second one is composed of opportunistic species, also 

with a relatively short life span, among which many are pioneer species which are not very habitat-specific. 

The third group is composed of species which require many years or even decades to achieve a minimum 

of reproductive success. Because the trait-defined groups are characterized by their response to the 

temporal pattern of stress in their environment, they have potential use as indicators of human stress to 
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marine environments. Population survival in the two first groups was shown to be unaffected by bottom 

trawling, whereas the response of the third species group is generally negative. Hence, these products 

provide information on the benthic ecology, but also on ecosystem vulnerability to human pressures. 

Application of trait-based analysis requires the compilation of life-history and living-mode characteristics 

of many hundreds of species. Although much information is available, often in very old references, the 

compilation is a long and painstaking effort. We compiled this information for many species of 

macrobenthos and fish. The coverage of European species is far from complete, but most dominant 

species in the North Atlantic realm are covered. As it is easier to find information on frequently occurring 

species, even a trait database that covers only a quarter of the species may easily cover 90% of the 

abundance. Extension to cover all species is impossible, as no life-history information is available in the 

literature on rare to very rare species. 

Within the Atlas of European Marine Life, we have produced three trait-based products. For macrobenthos 

and fish we compiled trait information from the literature and applied it to distinguish different trait-based 

types of species. We produced maps of their distribution, as well as maps of the spatial distribution of the 

individual trait modalities. For a third product, thermal vulnerability of marine species, we adopted a 

different approach. We derived the thermal tolerance of many species based on their occurrence records 

in OBIS. 

4.1 Benthic functional traits 

The data product is based on 11 different datasets, that have been carefully merged into one database 

for macrobenthos in the North Atlantic European waters. The different occurrence lists were merged, and 

the validity of taxonomic names was checked with the World Register of Marine Species (WoRMS). Two 

measures were considered per geographic location: individual organism density and number of taxa, in 

two separated data frames.  

Individual organism counts were summed per combination of location, sampling gear, sampling surface 

area, year, month and taxon. Sampling effort per location and sampling gear was calculated by summing 

the sampling surface areas of the different samples (when a location was sampled several times) and 

divided by the number of sampling times. This enabled the calculation of individual organism densities 

per sampling gear and per location, and finally per location (expressed in number of individuals per 

squared meters). 

The number of taxa per location was calculated by successive averaging, firstly per combination of 

sampling gear, sampling surface area, year and month; then, per combination of sampling gear, sampling 

surface area and year, and so on until finally averaging per location. 

Trait products are derived from the multiplication of the sample locations × taxa matrix by the taxa × trait 

modalities matrix through the community weighted mean procedure (CWM). For a given community and 

within a trait, the modality score is the percentage of species expressing the considered modality; all 

modality scores within that trait sum to one. 

Finally, all the final outcomes were interpolated by the DIVA (Data-Interpolating Variational Analysis) tool 

to create gridded output maps. 

Figure 9 shows the basic outcome of the analysis: maps of the prevalence of the three different types in 

the North-Atlantic European seas. Note that values in the Mediterranean are only based on a few French 

samples – outside the French coast the interpolation values are not reliable. 

We see a high prevalence of the resistant type in the northern Baltic Sea. This species-poor community 

distorts the scale somewhat. Outside this area, the resistant type is mainly dominant in shallow, wave-

swept areas, mostly coastal but also occurring on shallow areas such as the Dogger Bank. The Resilient 

type has a fairly homogeneous distribution, but is less abundant in deeper areas of the North Sea. Its 
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occurrence increases towards northern seas. The vulnerable type is most abundance in the deeper parts 

of the North Sea. It is rare or absent in the Baltic, and also not very dominant in northern seas. 

Apart from these maps, the product also encompasses interpolated maps of the prevalence of all 

modalities of the different traits. 

 

 

Figure 9. Distribution of the three main functional types of macrobenthos, based on DIVA interpolation and trait-

based classification 

4.2 Fish functional traits 

This data product is based on the International Bottom Trawl Survey database maintained by ICES and 

part of EMODNET. Species occurrences were selected in order to maximize the spatial extent over the 

European northwest shelf. Therefore, data older than the year 2000 were discarded since species lists 

were not completely reported in all regional protocols before that year. Some areas (e.g. north Spain) are 

still missing as the species lists are still partially reported. In other areas (e.g. Baltic Sea, Baltic International 

Trawl Survey), lists were completely opened only after 2010. 

The product displays the spatio-temporal distribution of four types of fish, based on a multivariate analysis 

of eight life history traits. Four main living modes were identified. The first and second groups comprise 

small species with a short life cycle. Species from group one differ from those from group two by a reduced 

fecundity compensated by either internal incubation or benthic embryonic development that increase 

juvenile survival, whereas species from group two are characterised by higher fecundity and juvenile 

mortality (unattended pelagic eggs). By contrast, groups three and four comprise large and long-lived 

species. Species from these groups also differ in fecundity, higher in group three, and juvenile survival, 

higher in group four. Group four is exclusively composed of elasmobranchs (rays, squates and sharks) 

which either internally incubate a few offspring that they release as adult-miniatures or release large eggs 

in strongly protective cases fixed on the sea floor. Although these data products provide information on 

fish species community ecology, they also provide indication on ecosystem vulnerability through the 

distribution of the two last species groups given the time that these species require to achieve their life 

cycle, including reproductive success and trophic control; besides, many of these large species have an 

important commercial value. 

Average spatial group distributions are completed by sliding series of temporal windows restricted to 

three successive years in order to detect potential structural changes. Complementary maps display 

scores for each of the 37 trait modalities aggregated per spatial location.  

Figure 10 shows an average over the entire sampling period of the occurrence of the four types. 
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Figure 10. Occurrence of the different fish trait-based types in European waters. Note that data for the 

Mediterranean are very restricted and interpolations there are unsure. 

4.3 Thermal affinities for European marine species 

This product differs from the other trait-based products in that the traits of the species are derived from 

their spatial occurrence, rather than from external literature sources. Thermal affinities were derived for 

all European marine species, by matching occurrence records from OBIS to gridded temperature 

products. These species-level thermal affinities were then used to produce assemblage-level averages on 

a 0.5º grid covering European seas, separately for benthos, zooplankton, fish and other functional groups. 

Finally these gridded assemblage-level averages were compared to current and projected future sea 

temperatures to identify areas of high climate vulnerability for each functional group. 

The product is a table with the thermal affinities of each species, which can be grouped by functional 

group to obtain 'community level thermal affinities'. With this information, we can compare the functional 

group-level temperature affinities to current and projected future temperature and create maps. 

As an example, the map in Figure 11 shows the difference between mean zooplankton thermal affinity 

based on mean sea surface temperature (SST) and expected maximum SST in 2050: 
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Figure 11. Map showing the difference between mean zooplankton thermal affinity based on mean sea surface 

temperature (SST) and expected maximum SST in 2050 

5 Discussion and outlook 

The current portfolio of data products in EMODNET Biology does not yet cover the entirety of the available 

datasets, but is comprised of examples for each of the essential Ocean Variables. Experience with the 

building of these data products has shown that major efforts are mainly required in data preparation. 

From taxonomic homogenization, over methodological bias corrections and detection of false versus real 

zeroes in datasets, this work requires a large amount of time and is extremely difficult to automate. Within 

EMODNET Biology a code base and experience have been developed and made publicly available through 

a dedicated github site. It is hoped that this will help to improve the productivity of this type of work in the 

future. 



 EASME/EMFF/2016/006 – EMODnet Biology  

22 

For a number of groups at higher trophic level (fish, mammals, birds, turtles) data sets are curated by 

other parties and transferred to EMODNET at a later stage. Although this causes a delay, it offers great 

advantages in terms of usability of the datasets for product preparation. 

The unequal spreading of observations in the EMODNET data bases is a challenge for the preparation of 

data products on many groups. There is especially a lack of open data in the Mediterranean and Black 

Sea. But also in the better covered seas, monitoring and sampling are often very unequal or scarcely 

distributed in vast areas. For these cases, the use of basic modelling approaches can improve the quality 

of the interpolated fields. We have gained experience with different modelling approaches. The 

development of the neural network-based incorporation of environmental variables into the interpolation 

routine DIVA is especially promising in this respect. It remains consistent with the DIVA approach used 

throughout EMODNET for the production of gridded products, and at the same time can improve the 

quality of the interpolations considerably. The case on which the method was tested was especially 

rewarding, given the well-known importance of salinity in determining animal communities in the Black 

Sea. It remains to be tested whether this approach would also improve the interpolations for other groups 

in other areas, but available evidence suggests that this might well be the case. Given the compiled large 

dataset on macrobenthos in the North Atlantic seas, this is the dataset of choice to test further 

development of that approach. In particular, this approach may help in overcoming the scale gap in these 

interpolation maps. While benthos is know to be strongly determined by small-scale variations in physical 

forcing and sediment characteristics, brute interpolation of data at a coarse scale tends to overlook this 

aspect and result in rather poor predictions of local abundance. 

The trait-based approach has required a major investment of effort in the compilation of life-history and 

living-mode characteristics of many species. Now that it is completed for benthic species and fish, it will 

be put to more use than the simple overview maps of functional groups presented in this report. An 

application has already been prepared by ICES using benthic traits to derive a sensitivity index to bottom 

trawl fisheries. We are also preparing products estimating the bioturbation potential of macrobenthos, 

which is of great importance for biogeochemical cycles in the sea. Other applications are in the 

deciphering of relations between functional characteristics and environmental factors. We envisage great 

opportunities in this respect, but will not develop these within the framework of EMODNET. Rather, it is 

hoped that the availability of the datasets will stimulate researchers to develop these possibilities. 

Although we have been able to develop a number of products on plankton, we feel that the available data 

in EMODNET on this functional groups is still underexploited. The derivation of one or a few harmonized 

datasets, similar to what has been done for macrobenthos, may enhance the activities and lead to better 

space-covering products. This will be a priority for the future. As plankton datasets tend to have less spatial 

coverage than benthic datasets, the modelling methodology shown in this phase of EMODNET may prove 

very useful in the future in order to fill the spatial gaps in the data sets. 

 

In conclusion, this portfolio of products and methodologies shows the progress in working up the large 

biological database in EMODNET. There is still a large amount of work to do before most relevant data will 

be worked up in products, but the approaches and methodologies are tested in practice and will be put 

to use in the coming phase of the project. 

 


