

EGU 2024

Ocean Acidification: Weaves to be tied on European and Global scale

Elisabeth Kubin (ekubin@ogs.it)¹, Marina Lipizer¹, Maria Eugenia Molina Jack¹, Megan Anne French¹, Alessandra Giorgetti¹

¹National Institute of Oceanography and Experimental Geophysics, Trieste, Italy

"Ocean acidification is a slow but accelerating impact with consequences that will greatly overshadow all the oil spills put together." - Sylvia Earle

Chemical reactions to the increased partial pressure of CO₂

 \rightarrow states of CaCO₃: Aragonite Calcite Mg-calcite

Different types of marine calcifying organisms will respond in very different ways.

Krill

Plankton & Phytoplankton

Corals

imall Fish

Declining Ocean pH

- The smallest plants and animals determine the state of the food web.
- Food chains are shifted
 by a decreasing pH value.
- Also shellfish have problems to build their shells.
- Many edible fish such as haddock, halibut, flounder and cod feed mainly on molluscs.

Large Fis

Octopu

Shellfish

(Clams, Oysters)

Pteropods: Sea butterflies (Limacina helicina)

- → important source of food for **juvenile Pacific salmon**
- \rightarrow Pteropods build their shells from aragonite
- → In a lab experiment, a sea butterfly (pteropod) shell placed in seawater with increased acidity slowly dissolves over 45 days.

(Source: David Littschwager/National Geographic Society)

Ocean Acidification is one of the Ocean Monitoring Indicators (OMI)

SDG Target 14.3 addresses Ocean Acidification.

The SDG 14.3.1 Indicator Methodology describes how to measure and report the key carbonate chemistry variables for ocean acidification to enable the global comparison.

- → Measurements of pH have existed from as early as 1910, but show a great lack of metadata until 1980/1990.
- → Data from 1980/1990 until present are more complete, but sometimes also lack essential information about:
- important additional parameters such as *salinity*,
 temperature and *pressure*;
 &
- essential metadata: such as *pH scales, methods, electrode, buffer solutions, formulae* used;
- → In general pH measurements over decades involved different in situ sampling, different pH buffers, different calibrations, intercalibrations, etc., i.e., as a consequence, the changes in pH over time might not reflect real pH changes.
- → Finer definitions of vocabularies and metadata are of great importance.

An international working group on Ocean Acidification Vocabularies and Metadata has been established to ensure the long-term usability of ocean acidification data for the SDG 14.3.1 Indicator Methodology.

→ FAIR (Findable, Accessible, Interoperable and Reusable) Ocean Acidification dataset

- → Including the parameters related to Ocean Acidification: pH, Total Alkalinity (TA), Total Dissolved Inorganic Carbon (DIC) and partial pressure of CO₂ (pCO₂)
- → Define standard metadata and common vocabularies (based on BODC Parameter Usage Vocabulary)
- \rightarrow Harmonization of world-wide ocean acidification databases

Vocabulary and Metadata Working Group

Vocabulary and Metadata Working Group

- To ensure the *long-term usability* of pH data and to allow a *complete description of the carbonate system* by scientists, reliable data is important.
- *The data can only be as good as the according metadata*

- Example from the preliminary metadata template (for the parameter pH):
- → e.g. sampling instrument, sampling method, calculation method, analyzing instrument, analyzing method, calibration information, temperature of pH & much much more ...

		1				L	······································
150			Yariable abbreviation in data				Column header name of the variable in the data files, e.g., pH
151			pH scale			25 02	The pH scale for the reported pH results, e.g., total scale, seawater scale, NBS scale, etc.
							How the variable is observed, e.g., surface underway, profile, time series, model output, etc. For experimental data,
			Observation type			25 03	this could be: laboratory experiment, pelagic mesocosm, benthic mesocosm, benthic FOCE type studies, natural
152							pertubration site studies, natural gradient studies, etc
153			Discrete or continuous				Whether the reported results are based on discrete-bottled measurements or continuous sensor measurements
154			In-situ or manipulated				Whether the variable reported is from an in-situ observation, or from a manipulated experiment.
155			Manipulation method (special				How the seawater chemsitry is manipulated (e.g., bubbling CO2, solid alkalinization, etc.)
156			Measured or calculated			25 07	Whether the variable is measured in-situ, or calculated from other variables
			Calculation method and			25 08	Information about how the variable was calculated, e.g., using a Matlab version of the CO2SYS with the
157			parameters (special use only)				dissociation constants of Lueker et al., 2000 for carbonic acid, etc.
15%			Sampling instrument			25 09	Instrument that is used to collect water samples, or deploy sensors, etc. For example, a Niskin bottle, pump, CTD, etc is a sampling instrument.
159			Sampling method			25 10	Additional information describing how the sample was collected.
							Instrument that is used to analyze the water samples collected with the 'sampling instrument', or the sensors that
							are mounted on the 'sampling instrument' to measure the water body continuously. For example, a coulometer,
			Analyzing instrument			25 11	winkler titrator, spectrophotometer, pH meter, thermosalinograph, oxygen sensor, YSI Multiparameter Meter, etc
							is an analyzing instrument. We encourage you to document as much details (such as the make, model, resolution,
160							precisions, etc) of the instrument as you can here.
161			Analyzing method			25 12	Additional information describing how the sample was analyzed.
				Calibration technique		25 13	Description of the pH calibration procedures.
162				description			Description of the principle dealers.
	25	pН		Frequency of		25 14	How frequent was the calibration carried out, e.g., every 6 hours, etc.
163				Calibration			
			Calibration information	Type of dye and		25 15	
164				manufacturer			
165				pH values of the		25.16	pH values of the standards, e.g., 4.0, 7.0, 10.0.
166				Temperature of calibration		25 17	Temperature at which the calibration was done.
167			Temperature of pH			25 18	Temperature at which the samples were measured.
			At what temperature was pH				The input could be a constant temperature value, or something like, in-situ temperature, temperature of analysis,
168			reported			25 19	etc.
			Temperature correction method			25 20	How the temperature effect was corrected.
169			(delete)			2020	now the temperature effect was connected.
170			Field replicate information				Repetition of sample collection and measurement, e.g., triplicate samples.
171			QC steps taken			25 22	Describe what QC steps have been taken to improve the quality of the data
172			Uncertainty			25 23	Uncertainty of the results (e.g., 1%, 0.02 pH, etc), or a description of the uncertainties involved in this method.
173			Veather or climate quality			25 24	
174			QC flag scheme				Describe what the quality control flags stand for, e.g., 2 = good value, 3 = guestionable value, 4 = bad value.
					•		

→ Next step: International Ocean Acidification Data and Metadata Workshop in Venice in May 2024 organized by OGS, UNESCO and NOAA.

 \rightarrow This important global collaboration will provide more accurate and detailed OA data and will help policy and decision makers to communicate more clearly and precisely about the impacts of climate change on marine ecosystems and resources, enabling holistic approaches.

The IPCC Special Report (2019) also states that reducing the general risks by limiting warming to 1.5 °C above preindustrial levels would require *transformative systemic change, integrated with sustainable development*.

'Science accumulates knowledge faster than society accumulates wisdom.' [science fiction author Isaac Asimov]

- The 2021-2030 UN Decade of Ocean Science for Sustainable Development aims to create a more **holistic and integrated approach**, with an emphasis also on indigenous people and the traditional knowledge of local people to achieve a truly sustainable approach and not just green- or bluewashing projects.
- Blue economy and blue growth is often doing more harm than good, because it is still based on exploitation and on the concept of economic growth on a finite planet (Ehlers, 2016), while indigenous people and their traditional conservation and management are based on the **respect of nature and taking care of the land** (Minerbi, 1999; Kealiikanakaoleohaililani et al., 2016; Berkes, 517 2017; Witte et al., 2018; UNESCO Man and Biosphere Programme, Reed, 2019).
- Such holistic ways of understanding the environment offer alternatives to the prevailing consumptionoriented values of Western societies (Berkes et al., 2006; Kimmerer, 2012; Brondízio et al., 2021).

Therefore, possible solutions cannot only be of technological nature, but require an urgent and strong shift of our way of thinking and of our entire worldview to make sure that future generations can experience healthy, living oceans and ecosystems.

→ Establish a **living stewardship of the earth**

11

.... Together Interconnectedness

Thank you for

your attention!

... 7 generation contract

For questions/ideas/discussions please write to: Elisabeth Kubin

kubin.elisabeth@gmail.com

