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1. Introduction: 

 

During this first year of the project, Coronis focused on improving the python interpolation 

package, which is the core library for the interpolation methods to be implemented in Globe. 

 

While the plan is to use it within Globe, the package can be used standalone, as well as a 

typical python library (to be added in other projects). The source code of the package is 

publicly available at: 

https://github.com/coronis-computing/heightmap_interpolation 

 

Also, a complete documentation, expanding the information in the present report, and 

including installation and usage information, was made available at: 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/ 

 

Moreover, with the aim of easing the adoption of the library, we also provide an already 

compiled docker image at DockerHub: 

https://hub.docker.com/r/coroniscomputing/heightmap_interpolation 

 

Several data providers and regional coordinators were kindly asked to provide relevant 

datasets requiring some kind of interpolation. The study on the density and distribution of 

the samples in those datasets put into relief that a single interpolation method may not fit 

the needs of all users. Consequently, we increased the number of interpolation algorithms in 

the Python package initially developed in HRSM2. Moreover, in order to ease usage, we 

unified all methods within the single command line entry point interpolate_netcdf4.py. 

 

In the following sections, we start by introducing the interpolation problem, as well as the 

motivations for implementing several methods in the package. Then, we list all the 

interpolation methods implemented, along with their suitability depending on the input data 

and their pros/cons. Finally, we present the work to be done in the second year of the project. 

2. Interpolation Methods 

“Interpolation” is a broad term. In our case, it consists in obtaining elevation values at 

cells/points given a set of known reference elevation data at known locations. However, 

depending on the sampling/distribution of the input data, and where we want to interpolate 

it, there are several ways of dealing with this problem. 

The typical literature for interpolation does not consider any specific distribution for the 

samples. In this sense, we find the Scattered-data interpolators. These methods work in two 

steps: 

https://github.com/coronis-computing/heightmap_interpolation
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/
https://hub.docker.com/r/coroniscomputing/heightmap_interpolation
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/usage.html


1. Take the known data points as reference to create an interpolator. 

2. Apply the interpolator at whatever query point you desire. For interpolations on a 

grid, as in our case, the interpolation is queried at all the grid cells to be interpolated. 

However, there are several cases in which the interpolation problem consists in filling 

“missing data”, in the sense of having continuous and densely-sampled parts of the map that 

are missing and that we need to fill given the known data surrounding these parts. In these 

cases, the problem can be seen as “filling the holes in a coherent way”. Obviously, the 

scattered data interpolators can be used for this purpose. However, there is a wide literature 

of methods trying to take advantage of the “filling” happening on a regular grid. In the 

computer vision literature, these are called inpainting methods. In this package we use 

inpainting approaches, usually devised for image processing, to tackle the interpolation 

problem on elevation grids. As mentioned above, these methods only work on the regular 

grids, but provide the advantage of providing higher-degree approximations faster than some 

similar approaches in the scattered area, and require much less memory to execute (the 

solver we implement just applies convolution operations on the input grid). 

In the following sections, for each of the methods in the package, we will briefly describe their 

behaviour, provide the cases for which a given method is more suitable, and list their 

pros/cons. For a complete reference on how to call each method, and the list of parameters 

available to tune in each case, please refer to the documentation. 

In addition, in order to get a qualitative evaluation of the behaviour of each method, we will 

run them with default parameters on the following dataset: 

 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/


Figure 1. Example dataset. Colored areas and points represent the known reference elevation 

data, while the area to interpolate is shown in white. Data by courtesy of the Swedish 

Maritime Administration 

Note that this dataset mixes both scattered and densely-sampled reference data. 

3. Scattered data Interpolators 

Nearest Neighbors 

 

Figure 2. Example dataset interpolated using the Nearest Neighbors interpolant (nearest 

option in interpolate_netcdf4.py). 

Each cell to interpolate gets its value from the nearest reference cell. 

Suitable for 

● Quick initialization of the interpolation using PDE inpainters (see sections below). 

● Quick large-area interpolation. 

Advantages 

● Fastest interpolator. 

● As opposed to the other two fast scattered data interpolation methods (linear and 

cubic), it can interpolate outside of the convex hull of the reference data. 

Disadvantages 



● Results look blocky, as many points get the same elevation value. 

Linear 

 

Figure 3. Example dataset interpolated using the Linear interpolant (linear option in 

interpolate_netcdf4.py). 

Computes a linear interpolant by creating a 2D Delaunay triangulation using the reference 

data points. Upon a given query point, it searches in which of the triangle in the XY plane it 

falls, and computes a barycentric interpolation of the elevation using the reference values at 

the vertices of the triangle. 

Suitable for 

● Quick large-area interpolation. 

Advantages 

● Fast classical interpolation method applicable to large areas. 

Disadvantages 

● May produce artifacts if samples’ density vary rapidly, or if the scattered samples are 

not uniformly distributed over the inpainting area (see figure above). 

● Does not “extrapolate” in query locations outside of the convex hull of the reference 

data. 

Cubic 



 

Figure 4. Example dataset interpolated using the Cubic interpolant (cubic option in 

interpolate_netcdf4.py). 

As in the linear method, it creates a 2D Delaunay triangulation using the reference data points 

and query points are interpolated within the triangle where they fall in the XY plane. However, 

as opposed to using a linear barycentric interpolation within the triangle, it uses a piecewise 

cubic interpolating Bezier polynomial. 

Suitable for 

● Quick large-area interpolation. 

Advantages 

● Provides a smoother interpolation than the linear method at a similar computational 

cost. 

Disadvantages 

● May produce artifacts if samples’ density vary rapidly, or if the scattered samples are 

not uniformly distributed over the inpainting area (see figure above). 

● Does not “extrapolate” in query locations outside of the convex hull of the reference 

data. 

Radial Basis Functions 



This method was developed in the previous phase of EMODnet Bathymetry (HRSM2), and 

included in the package as part of the new command-line interface. 

A Radial Basis Function (RBF) is a function whose value depends only on the distance between 

the input and some fixed point. The basic idea of a RBF interpolator is to construct an 

interpolant of the data using a summation of several RBF centered at the input reference data 

points. The formal definition is the following: 

 

Where  is a given radial basis function centered at a known/reference data point 

,  is a polynomial of small degree evaluated at point , and  is a scalar weight. 

Thus, basically, we have a polynomial (1st term) capturing the main trend of the data, and the 

summation of weighted RBFs (2nd term). Therefore, the unknowns of this interpolant are 

mainly the few terms of the polynomial  and the  weight of each RBF. These unknowns 

can be solved using a linear system of equations. In matrix form, this corresponds to: 

 

Where: 

●  

●  are the coefficients of the polynomial. 

●  are known elevation values at . 

While solving this system of equations is conceptually simple, it is important to notice that 

the matrix A is a square matrix with side length equal to the number of input data points. 

Therefore, this formulation becomes prohibitively complex for large datasets, as the amount 

of memory and computational resources required for solving and/or evaluating the 

interpolant is too large. This is the reason why there is no figure showing the result in this 

section: even for a small dataset as the one we are using, it is not feasible to compute the 

interpolant in a reasonable amount of time and resources. 

However, it has the nice feature of allowing some “tuning” of the properties of the 

interpolating surface via the RBF type that we choose. You can check the complete list of RFB 

types available in the documentation. 

Suitable for 

● Best approximation quality for the interpolant. 

https://www.codecogs.com/eqnedit.php?latex=A_%7Bi%2Cj%7D%20%3D%20%5Cphi(%7Cx_i-x_j%7C)#0
https://www.codecogs.com/eqnedit.php?latex=P_%7Bi%2Cj%7D%20%3D%20p_j(x_i)#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/


● Small datasets. They can be small in the number of input reference points, and large 

in the number of query points (huge scattered data). 

Advantages 

● Allows tuning the properties of the interpolating surface by changing the RBF type 

and parameters. 

Disadvantages 

● Depending on the input data and the selected RBF type, the resulting interpolant 

surface may overshoot the input data (minimum and maximum elevation values may 

be outside the range of the input data). 

Partition of Unity Radial Basis Functions 

 

Figure 5. Example dataset interpolated using the Partition of Unity Radial Basis Functions 

interpolant (purbf option in interpolate_netcdf4.py). 

This method was also developed in EMODnet Bathymetry HRSM2. Based on the low 

applicability of the original definition of the RBF interpolant, the Partition of Unity Radial Basis 

Functions (purbf) is an attempt to lower as much as possible the memory and computational 

requirements of the RBF interpolator. 

The Partition of Unity Method (PUM) divides the global domain into smaller overlapping 

subdomains. In each of these subdomains, a RBF interpolant is computed using the 

formulation presented in Radial Basis Functions. Then, when evaluating a query location, the 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#rbf-interpolant


contributions of several neighboring RBF interpolations are blended together in order to get 

the final value. 

More precisely, we enforce a quadtree decomposition. In the following figure we can see an 

example of this decomposition: 

 

Figure 6. An example of the decomposition in purbf method. Reference data points are 

marked as black dots, the quadtree decomposition is shown using squares, and the domain 

of each local RBF corresponding to each square is shown with a colored circle. 

Each cell in the quadtree defines a local RBF interpolant and its area of influence. Note how 

the different areas overlap between them (a condition for continuity) and how the area of 

influence of each local interpolant adapts to the complexity of the data (larger regions in more 

sparse areas, and smaller regions in denser ones). Finally, since the extent of local RBF is 

limited, we also ensure that at least one local interpolant covers all the data within the 

possible query space (i.e., it covers the extent of the input grid). 

The PU interpolant preserves the local approximation order for the global fit. Therefore, large 

RBF interpolants can be computed by solving small interpolation problems and then 

combining them together with the global PU. 

Suitable for 

● Datasets for which the basic RBF interpolator required too much memory and 

computational resources. 

Advantages 



● Tunnable output: as in the RBF interpolator, changing the base RBF will change the 

shape/properties of the output interpolated surface. 

● Preferrable in cases where the number of reference data points is far smaller than 

the number of points to interpolate. 

Disadvantages 

● While compared to the pure RBF, reduction in computational requirements is huge, 

it may not be sufficient for processing large datasets (i.e., it will still be slower to 

compute than other options in this package). 

4. PDE-based Inpainting Interpolators 

Our heightmaps are bivariate functions of the form , where x/y are the 

coordinates in a plane and z the corresponding elevation value. 

A simple way of defining the interpolant is to define the properties that the “interpolating 

surface”  must be satisfied at interpolated areas using Partial Differential Equations 

(PDEs). 

Once defined a given PDE, we can solve it using finite differences in a gradient-descent 

manner, where: 

 

Being the subindex  the iteration index,  the PDE or the gradient that we need to 

follow,  the size of the update step at each iteration. Given a properly small , we can iterate 

the equation above to steady state (i.e., no change) in order to solve for the functional. 

Using discretized differential stencils, we can work directly on the input cell grid, and evolve 

the previous equation using just convolutions. We implement all the methods in this section 

using the same PDE solver. However, we explain in the next section some of the speed-up 

tricks that we use to accelerate the classical gradient descent optimization. 

Speed-Up Tricks 

The convergence speed of the gradient descent optimization on the inpainted area is highly 

dependent on the initial values. It is not the same as trying to evolve the solution using the 

optimization starting from a very vague solution (e.g. all unknown initial values are zero) 

rather than starting from initial values closer to the solution. In this direction, we provide two 

ways to better initialize the problem in Initializer and Multi-Grid Solver below. 

Initializer 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#inpainting-initializer
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#inpainting-initializer
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#inpainting-mgs
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#inpainting-mgs


The initializers available are: 

● zeros: init unknown values with zeros. This is the worst initializer, just kept here for 

comparison purposes with the rest. 

● mean: init unknown values with a constant equal to the mean of the reference 

elevation values. 

● nearest: use the nearest interpolant to initialize unknown values. 

● linear: use the linear interpolant to initialize unknown values. Since this interpolant is 

just defined over the convex hull of the input data, data outside it will get a constant 

value equal to the mean of the reference elevation values. 

● cubic: use the cubic interpolant to initialize unknown values. Same as in linear, it will 

get the mean value of reference value outside the convex hull of the reference data 

points. 

● harmonic: uses the harmonic inpainter to fill the missing data. Note that, while being 

the fastest of the inpainter methods, this involves solving another gradient descent 

optimization, so depending on the complexity of the data it may be very slow. 

Multi-Grid Solver 

By setting the proper parameters, the interpolate_netcdf4.py function will use a Multi-Grid 

Solver (MGS). Basically, instead of solving the optimization problem at the full resolution grid 

directly, it will do it in a multi-resolution way. 

The MGS starts building a pyramid of different levels of resolution from the original grid, 

where each level of the pyramid contains a halved resolution version of the previous one: 

 

Figure 7. Schematic of the multi-resolution pyramid created by the Multi-Grid Solver. The 

original grid (bottom of the pyramid) is halved in resolution recursively to get lower resolution 

versions of the problem. Then, starting from the top of the pyramid, the inpainting problem 



is solved in a lower resolution version, and upscaled and propagated to the next (higher 

resolution) level of the pyramid as initial guess. 

Then, starting from the coarser level, we solve the inpainting problem there, and use that 

solution to initialize the solver in the next (higher resolution) level of the pyramid. 

Therefore, we use upscaled versions of the problem solved at coarser resolutions to initialize 

the inpainting problem at higher resolutions. In this way, the initial values of the optimization 

at each level of the pyramid are closer to the final solution, decreasing like this the number 

of iterations required for convergence. 

Harmonic Inpainter 

 

Figure 8. Example dataset interpolated using the Harmonic inpainter (harmonic option in 

interpolate_netcdf4.py). 

An harmonic surface is a twice differentiable function satisfying the Laplace equation: 

 

This method has many analogies: 

● It can be seen as an “isotropic diffusion” of the elevation values at the borders 

surrounding the missing data towards the area to interpolate. 

● Its evolution follows the heat diffusion equation. 

● It minimizes the Sobolev norm on the grid, constrained to the input reference data. 

● The interpolated surface is a “minimum energy surface”, and many times it is 

described as the “shape a film of soap would take if layed over the data points”. 

https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Heat_equation


Suitable for 

● Filling large gaps smoothly without overshooting the input data. 

Advantages 

● Fastest of the inpainting methods. 

● It will never overshoot the data (minimum and maximum elevation values never 

below/over the reference ones). 

Disadvantages 

● Does not work well with sparsely sampled data: isolated data points will not 

contribute much to the interpolation. 

Total Variation (TV) Inpainter 

 

Figure 9. Example dataset interpolated using the Total Variation inpainter (tv option in 

interpolate_netcdf4.py). 

Minimizes the Total Variation formula within the area to inpaint: 

 

Where: 

 



Intuitively, it tends to preserve/continue high gradients better than harmonic, since the 

evolution of the optimizer can be considered a type of anisotropic diffusion. 

However, it will not take into account isolated points, and should only be used for filling gaps 

with no data fully surrounded with reference data. 

Suitable for 

● Filling continuous gaps of data (i.e., not suitable for scattered data interpolation). 

Advantages 

● Provides similar results to the harmonic inpainter, but tends to better preserve level 

lines of the surroundings. 

Disadvantages 

● Does not work well with sparsely sampled data: isolated data points will not 

contribute much to the interpolation. 

Continous Curvature Splines in Tension (CCST) Inpainter 

 

Figure 10. Example dataset interpolated using the Continous Curvature Splines in Tension 

inpainter (ccst option in interpolate_netcdf4.py). 

Implements the method in [Smith90]. The PDE guiding this interpolant is the following: 

 (1) 

 

https://en.wikipedia.org/wiki/Anisotropic_diffusion
https://en.wikipedia.org/wiki/Anisotropic_diffusion
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#smith90
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#smith90


If we take a look to equation (1), we will identify that  is the harmonic equation (same as 

in Harmonic Inpainter). Also, in the other term, we find , the “harmonic of the 

harmonic”, that is, the biharmonic surface. And, in both terms, they are affected by a constant 

. 

The tension parameter  allows tuning the influence of an harmonic and a biharmonic surface 

in the final result. Therefore: 

●  equals a biharmonic surface. 

●  equals an harmonic surface (same result as in Harmonic Inpainter). 

● A value of  between 0 and 1 is a mixture of both harmonic/biharmonic interpolants. 

In a nutshell, if we chop off the peak of a mountain at a given altitude, and we try to 

interpolate it using this method,  would probably reconstruct the peak of the mountain 

(note that this means that it will overshoot the input data), while  would reconstruct a 

flat area. A  between 0 and 1 would be a mix of both results. 

Note that this is a re-implementation/variant of the method in [Smith90], which in turn is the 

method implemented in GMT surface. 

[Smith90] Smith, W. H. F, and P. Wessel, 1990, Gridding with continuous curvature splines in 

tension, Geophysics, 55, 293-305. 

Suitable for 

● Getting a higher order interpolating surface, similar to what we achieve with the 

purbf method. 

● Achieving the same results as using the purbf with a thin plate spline RBF (tension == 

0) for datasets where the number of reference data points is much larger than the 

number of points to interpolate with smaller memory requirements and 

computational cost. 

Advantages 

● It provides an “easy to tune” mix of a harmonic and a biharmonic interpolant. 

Disadvantages 

● Slower execution time than other inpainters. 

● Depending on the parameters, it may overshoot the data. 

Absolutely Minimizing Lipschitz Extension (AMLE) Inpainter 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#harmonic-inpainter
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#harmonic-inpainter
https://www.codecogs.com/eqnedit.php?latex=t%3D0#0
https://www.codecogs.com/eqnedit.php?latex=t%3D1#0
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#harmonic-inpainter
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#harmonic-inpainter
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#smith90
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#smith90
http://gmt.soest.hawaii.edu/doc/latest/surface.html
http://gmt.soest.hawaii.edu/doc/latest/surface.html


 

Figure 11. Example dataset interpolated using the Absolutely Minimizing Lipschitz Extension 

inpainter (amle option in interpolate_netcdf4.py). 

Implements the method in [Almansa02]. Following the notation of the original reference, The 

PDE guiding this interpolant is the following: 

 

Where  denotes the gradient of . 

The main effort of the AMLE model is to “avoid oscillations”, i.e., to avoid the interpolated 

elevation to overshoot the reference values (min and max elevation value do not change). 

Also, it handles “isolated points'' in the reference data. 

[Almansa02] Andrés Almansa, Frédéric Cao, Yann Gousseau, and Bernard Rougé. 

Interpolation of Digital Elevation Models Using AMLE and Related Methods. IEEE 

TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 2, FEBRUARY 2002 

Suitable for 

● Interpolating gaps in terrain data using a better interpolant, but trying not to 

overshoot the original data. 

● Scattered data: this is the only approach that always takes into account scattered 

data properly (ccst with a tension apoaching 1 also does, but not so well if tension 

approaches 0…). 

https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#almansa02
https://emodnet-heightmap-interpolation.readthedocs.io/en/latest/methods.html#almansa02


Advantages 

● It is the only inpainter method in this package that was originally devised for 

interpolating heightmaps without overshooting the data. 

● Contribution of isolated points is properly propagated within the area to interpolate. 

Disadvantages 

● Slower execution time than other inpainters. 

● Depending on the dataset, it may require manual tuning of the update step size for 

the solver to converge. 

5. Other Inpainters 

Since one of the dependencies we use is OpenCV, and this library has some inpainting 

methods already implemented, we created interphases for using them on our heightmap 

interpolation problem. Note that these methods are typically used for closing small, thin gaps, 

as the ones you can see in the examples of the OpenCV documentation. 

OpenCV’s Telea 

 

Figure 12. Example dataset interpolated using the OpenCV’s Telea inpainter (telea option in 

interpolate_netcdf4.py). 

The Telea variant of OpenCV’s inpaint function. 

Suitable for 

https://opencv.org/
https://opencv.org/
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_photo/py_inpainting/py_inpainting.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_photo/py_inpainting/py_inpainting.html
https://docs.opencv.org/3.4/d7/d8b/group__photo__inpaint.html#gaedd30dfa0214fec4c88138b51d678085
https://docs.opencv.org/3.4/d7/d8b/group__photo__inpaint.html#gaedd30dfa0214fec4c88138b51d678085


● Interpolating “thin” continuous missing data parts fast. 

Advantages 

● Faster than PDE-based inpainters. 

Disadvantages 

● Does not consider scattered data at all. 

OpenCV’s Navier-Stokes 

 

Figure 13. Example dataset interpolated using the OpenCV’s Navier-Stokes inpainter (navier-

stokes option in interpolate_netcdf4.py). 

The Navier-Stokes variant of OpenCV’s inpaint function. 

Suitable for 

● Interpolating “thin” continuous missing data parts fast. 

Advantages 

● Faster than PDE-based inpainters. 

Disadvantages 

● Does not consider scattered data at all. 

https://docs.opencv.org/3.4/d7/d8b/group__photo__inpaint.html#gaedd30dfa0214fec4c88138b51d678085
https://docs.opencv.org/3.4/d7/d8b/group__photo__inpaint.html#gaedd30dfa0214fec4c88138b51d678085

