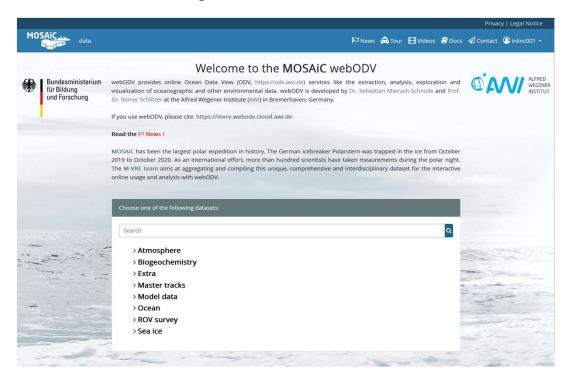


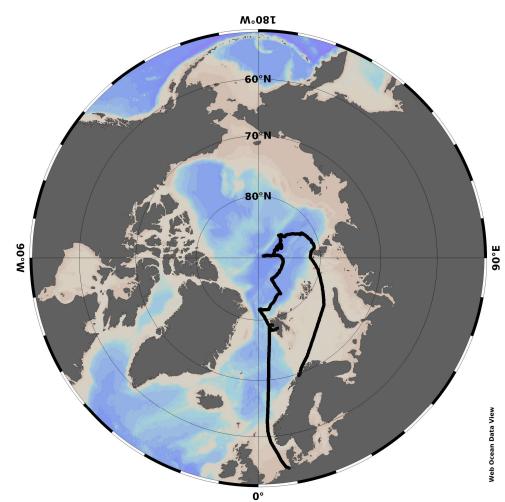
International conference on Marine Data and Information Systems



The data conversion process for the M-VRE webODV

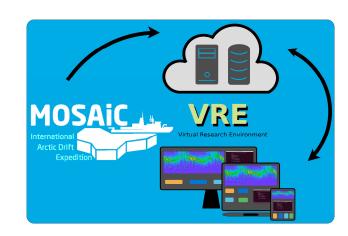
Ingrid Linck Rosenhaim Sebastian Mieruch Reiner Schlitzer

May 29th 2024, Bergen - Norway



MOSAiC Expedition

- The icebreaker Polarstern was frozen in the Arctic Sea ice for a year (2019-2020) following the Transpolar Drift
- An international expedition involving many countries and more than 100 scientists
- An incredible amount of measurements were collected above, within, and under the sea ice
- These data are available as open source since January 2023 in PANGAEA



MOSAiC-Virtual Research Environment Project

- The M-VRE Project offers different tools for the exploration of MOSAiC data.
- One of these tools is webODV.
- webODV is the online version of Ocean Data View (ODV)
 - ODV is an established software for the analysis and visualization of oceanographic and georeferenced data
- webODV is an interactive and powerful tool accessible via the browser and in a user-friendly virtual environment
- In M-VRE webODV, the MOSAiC data is uploaded and kept up-to-date with PANGAEA, and the data can be analyzed and visualized directly.

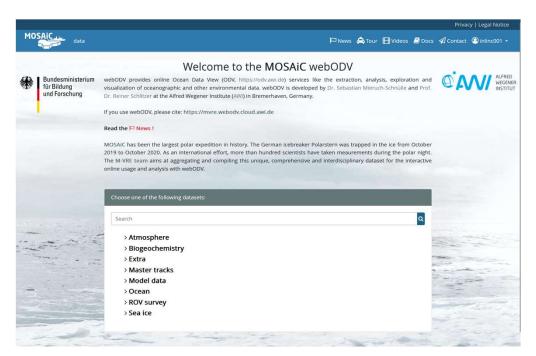
https://mosaic-vre.org

https://webodv.awi.de

https://odv.awi.de

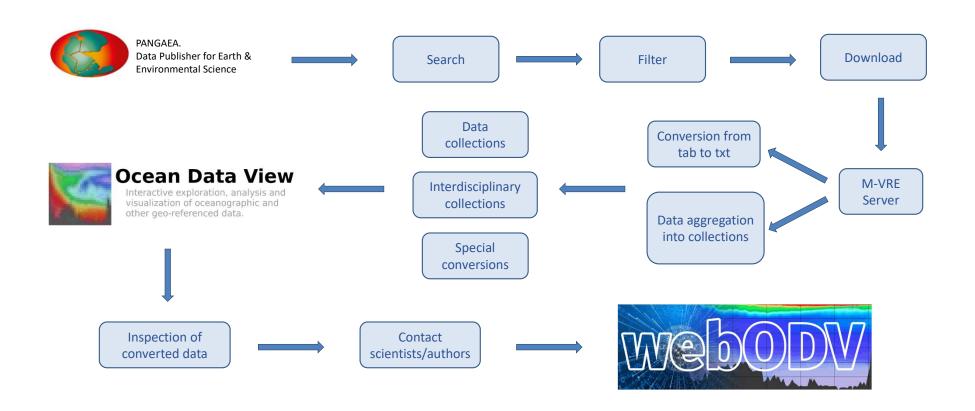
webODV and FAIR data

Findable
Accessible
Interoperable
Reusable


- Findable: every data set in webODV has a direct link to the original file in PANGAEA
- Accessible: data aggregated into collections of similar measurements. These data can be analyzed and visualized individually by filtering the data. The collections are kept up-to-date with the data, metadata, and data references in PANGAEA.
- **Interoperable**: Data collections are provided in webODV for download in three consistent formats: text, ODV, and netCDF.
- **Reusable**: copies of analysis and visualizations of collections created in webODV can be shared with co-authors and colleagues via links. These are easily **Reproducible** without changing the analysis and visualizations of the sender.

The MOSAiC data in webODV

- The MOSAiC measurements in webODV are presented as data collections
- These data collections are separated into categories:
 - Atmosphere
 - Biogeochemistry
 - Interdisciplinaty collections
 - Master tracks
 - Model data
 - Ocean
 - ROV survey
 - Sea ice
 - Extra



https://mvre.webodv.cloud.awi.de

Data conversion workflow: from PANGAEA to webODV

Metadata

- The following metadata variables are merged to the data:
 - Basis
 - Cruise
 - Event
 - Station
 - Project
 - URL
 - RIS and BibTeX citations
 - Version

- Last modified
- Scientists
- Main Scientist
- Contact
- Method
- Bottom Depth [m]
- Original file url
- Longitude and Latitude

- These metadata ensure:
 - Transparency
 - Traceability of data source and authors

Special conversions

- Data not in tab format:
 - netCDF
 - Text
 - TAR
 - zip
 - xlsx
 - Etc...

Data

Land Download dataset as tab-delimited text — use the following character encoding: UTF-8: Unicode (PANGAEA defa

10	2.0	3 🗗 🖾
Content	Binary	Binary (Size) [Bytes]
Coordinates of the nearest CCLM grid point (1h data)	♣ C15_Lat_Lon_winter.txt	209.4 kBytes
CCLM near-surface data (1h): sea ice from AMSR data	▲ C15_near-surface_winter.txt	556.1 kBytes
CCLM near-surface data (1h): sea ice from MODIS data	▲ C15MOD0_near-surface_winter.txt	557.6 kBytes
CCLM Integrated humidity and temperature data (1h dat	a) & C15MOD0_integrated_GS_winter.txt	170.1 kBytes

Regional climate model simulations of near-surface variables https://doi.pangaea.de/10.1594/PANGAEA.944502

- Data structure:
 - Missing data variable / different data structure
 - Transformation of many columns into a few new ones

205: Temperature, difference (Thermistor 203) [°C]

206: Temperature, difference (Thermistor 204) [°C]

207: Temperature, difference (Thermistor 205) [°C]

208: Temperature, difference (Thermistor 206) [°C]

209: Temperature, difference (Thermistor 207) [°C]

210: Temperature, difference (Thermistor 208) [°C]

Sample: 1 / 1		
1: time_ISO8601 [years since 0000-01-01]	2020.1134	Sample: 1 / 208
2: Quality flag, position ()	0.00	1: time_ISO8601 [years
3: Temperature, difference (Thermistor 1) [°C]	-31.84	2: Quality flag, position
4: Temperature, difference (Thermistor 2) [°C]	-31.82	3: Seconds after the he
5: Temperature, difference (Thermistor 3) [°C]	-31.74	4: Thermistor number
6: Temperature, difference (Thermistor 4) [°C]	-31.87	5: Temperature, differe
7: Temperature, difference (Thermistor 5) [°C]	-31.73	
8: Temperature, difference (Thermistor 6) [°C]	-31.98	
9: Temperature, difference (Thermistor 7) [°C]	-31.87	
10: Temperature, difference (Thermistor 8) [°C]	-31.93	
11: Temperature, difference (Thermistor 9) [°C]	-31.88	
12: Temperature, difference (Thermistor 10) [°C]	-31.93	
13: Temperature, difference (Thermistor 11) [°C]	204: Temperature, differe	ence (Thermistor 202) [°C]

14: Temperature, difference (Thermistor 12) [°C]

15: Temperature, difference (Thermistor 13) [°C]

16: Temperature, difference (Thermistor 14) [°C]

17: Temperature, difference (Thermistor 15) [°C]

18: Temperature, difference (Thermistor 16) [°C]

1: time ISO8601 [years since 0000-01-01]	2019.7603
2: Quality flag, position ()	0
Seconds after the heating cycle [sec]	0
4: Thermistor number	2
5: Temperature, difference [°C]	-9.62

-1.88

-1.79

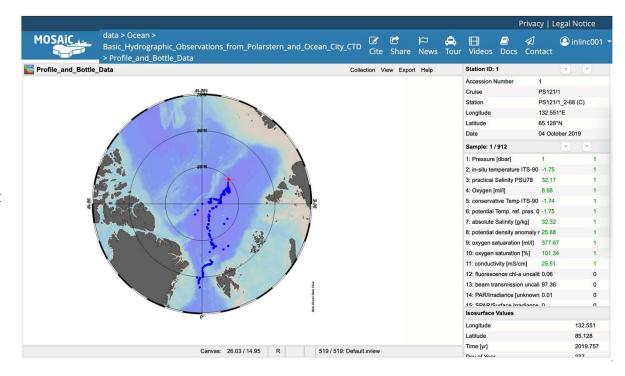
-1.90

-1.73

-1.73

-1.74

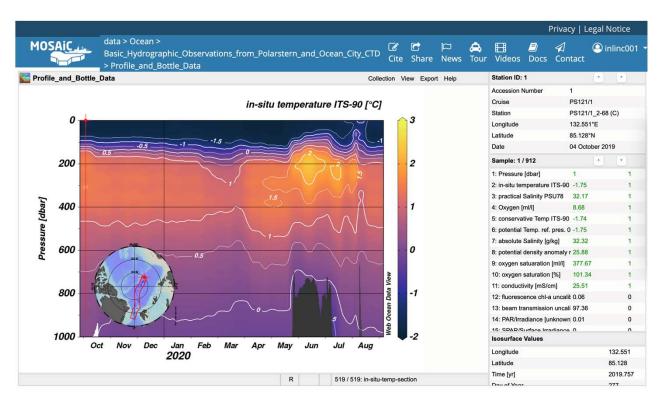
-1.77


Heating-induced temperature difference measurements from radiation station https://doi.org/10.1594/PANGAEA.948899



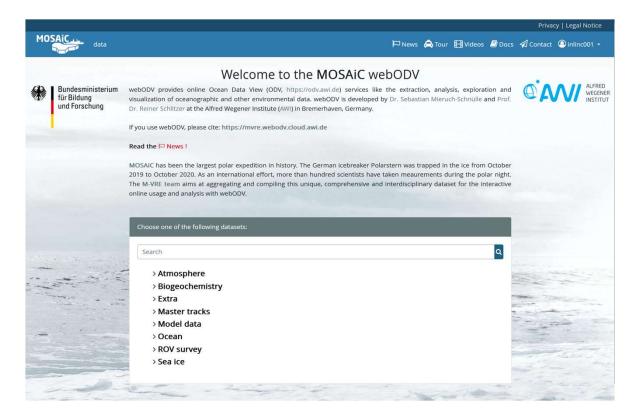
Data conversion to ODV format

- Bash scripted
 - .Data folder and default views
 - .odv file
 - .nc files used by other M-VRE tools like DIVAnd
- The collections are then uploaded onto our webODV test
 - Through inspection of the converted data
- The collections are uploaded onto webODV and are ready for use.



Physical oceanography based on ship CTD during POLARSTERN cruise PS122 https://doi.pangaea.de/10.1594/PANGAEA.959963

Section layout in webODV



Physical oceanography based on ship CTD during POLARSTERN cruise PS122 https://doi.pangaea.de/10.1594/PANGAEA.959963

Thank you!

https://mvre.webodv.cloud.awi.de

International conference on Marine Data and Information Systems

