

Outline

- Ocean modelling at the Met Office
- Storm surge forecasting
 - Current operational setup
 - New surge model setup, tests and results

Ocean modelling at the Met Office

Models and Systems

- Surface waves based on NCEP's WAVEWATCH III®
 - Runs 4 x daily, including an ensemble
- Storm surge based on CS3X (moving to NEMO)
 - Runs 4 x daily, including an ensemble
 - SST & sea-ice satellite and in situ obs analysis (OSTIA)
 - foundation SST and diurnal temperature
- Ocean (FOAM) using NEMO-CICE with NEMOVAR data assimilation
 - 3D monitoring and prediction, including biogeochemistry
 - Coupled Atmosphere-Ocean-Wave-Ice-Land research systems

www.metoffice.gov.uk

Shelf seas forecasts – NEMO/ERSEM

- FOAM-NEMO Shelf Seas model
 - Temperature, salinity, currents, sea level
 - Tides, s-coordinates
- ERSEM Ecosystem model
 - Nutrients, phytoplankton, zooplankton
 - sediments
- Driven by NWP surface fluxes, rivers & bdys
- Assimilation of SST data
- Daily 5-day forecast
- 20+ year hindcasts of physical system

www.metoffice.gov.uk

Shelf seas forecasts – NEMO/ERSEM

- FOAM-NEMO Shelf Seas model
 - Temperature, salinity, currents, sea le
 - Tides, s-coordinates
- ERSEM Ecosystem model
 - Nutrients, phytoplankton, zooplankton,
 - sediments
- Driven by NWP surface fluxes, rivers
- Assimilation of SST data
- Daily 5-day forecast
- 20+ year hindcasts of physical system

Storm surges

- Change in coastal sea level caused by the combined effects of surface winds and air pressure
- Potential to cause widespread coastal flooding, damage to infrastructure, and loss of life
- Met Office run an operational storm surge forecast system to mitigate risk

NEMO-surge project

- CS3X is becoming more difficult to maintain. Can we set up a NEMO based model to replace it?
- Easier to add future developments
- Harmonise the models run at the Met Office

© Crown Copyright 2016, Met Office

NEMO-surge

- Based on AMM7 higher resolution than CS3X (~12km vs ~7km)
- Barotropic, no temperature/salinity
- Inputs:
 - Tides at open boundaries
 - Wind and air pressure
- Testing in 2 stages: tide only, then with atmospheric forcing

Met Office
National Oceanography Centre

Tide-only sensitivity tests

- Bathymetry crucial for correct tidal solution
- Bottom friction coefficient
- Number of tidal constituents
- 1 year hindcast (2004)

Tide sensitivity tests: bathymetry

- Default AMM7 (NOOS based) "Control"
- Extra manual tweaks to North Sea, Fair Isle gap, Waddenzee
- EMODnet product
 - Product is referenced to LAT, but model needs MSL. Used long model run to estimate the correction
 - Minimum depth applied for model stability (6m or 10m depending on tidal range)
- Harmonic analysis on model output, compared with harmonic analysis from observed timeseries (19 years)

Tide sensitivity tests: bathymetry

Tidal	Mean complex Error					RMS complex error				
constituent	Control	NS	WZ	FIG	EMODnet	Control	NS	WZ	FIG	EMODnet
Q1	0.75	0.73	0.75	0.75	0.77	0.79	0.77	0.79	0.8	0.85
01	1.75	1.36	1.75	1.75	0.7	1.92	1.48	1.93	1.92	0.81
P1	0.76	0.68	0.77	0.77	0.92	0.86	0.76	0.87	0.86	0.98
K1	1.99	1.83	2	2	1.56	2.28	2.11	2.29	2.29	1.95
2N2	2.62	2.69	2.63	2.65	2.92	3.96	4.03	3.97	3.97	4.14
MU2	2.19	2.03	2.15	2.14	2.01	2.87	2.65	2.85	2.82	2.53
N2	5.87	4.89	5.87	5.77	3.47	6.84	5.57	6.83	6.72	4.02
NU2	1.09	1.06	1.09	1.09	1.23	1.29	1.21	1.29	1.28	1.34
M2	23.77	19.23	23.7	23.17	16.16	29.23	22.19	29.26	28.62	18.99
S2	8.95	7.42	8.93	8.75	5.07	10.96	9.01	10.91	10.72	5.86
K2	2.61	2.13	2.61	2.55	1.92	3.13	2.54	3.14	3.08	2.17
M4	7.72	7.59	8.08	7.93	5.6	9.65	9.65	10.07	9.89	7.95
MS4	5.59	5.38	5.81	5.73	3.77	7.52	7.38	7.76	7.65	5.75
M6	2.5	2.26	2.4	2.43	1.87	3.34	3.12	3.23	3.27	2.31

Complex error: $Hs = \sqrt{(H_m \cos G_m - H_o \cos G_o)^2 + (H_m \sin G_m - H_o \sin G_o)^2}$

© Crown Copyright 2016, Met Office

Surge sensitivity

- Wind parameterisation:
 - Charnock or Smith & Banke?
 - Sensitivity to parameters
- Reference pressure level
- Residual and skew surge compared with observations and benchmarked against CS3X
- 2 year hindcast (2013-14)

© Crown Copyright 2016, Met Office

Wind parameterisation tests

- 5 runs using Charnock values 0.0185 0.035
- 3 runs using linear Smith and Banke type
- Not much sensitivity most of the time, more during surge events

Port	CS3X	Ch185	Ch2	Ch24	Ch275	Ch35	SB0	SB1	SB2
Ilfracombe	0.114	0.112	0.112	0.111	0.111	0.111	0.114	0.113	0.112
Hinkley Point	0.148	0.143	0.143	0.142	0.142	0.141	0.146	0.144	0.144
Avonmouth	0.211	0.211	0.211	0.212	0.212	0.213	0.212	0.212	0.212
Newport	0.215	0.213	0.213	0.212	0.212	0.211	0.216	0.214	0.214
Mumbles	0.082	0.076	0.076	0.075	0.075	0.075	0.080	0.078	0.078
Milford Haven	0.114	0.113	0.113	0.112	0.112	0.112	0.115	0.114	0.113
Fishguard	0.082	0.082	0.082	0.082	0.081	0.082	0.084	0.083	0.083
Barmouth	0.082	0.078	0.077	0.076	0.076	0.076	0.082	0.080	0.079
Holyhead	0.056	0.051	0.051	0.051	0.051	0.053	0.054	0.052	0.052
Llandudno	0.074	0.075	0.074	0.073	0.073	0.073	0.080	0.077	0.076
Liverpool	0.121	0.122	0.122	0.120	0.120	0.119	0.127	0.124	0.123
Heysham	0.086	0.089	0.088	0.087	0.087	0.088	0.094	0.091	0.090
Port Erin	0.056	0.056	0.056	0.055	0.054	0.055	0.062	0.059	0.058
Workington	0.106	0.103	0.104	0.105	0.106	0.110	0.104	0.103	0.104
Portpatrick	0.067	0.064	0.064	0.063	0.063	0.063	0.070	0.066	0.066
Millport	0.078	0.075	0.075	0.075	0.076	0.078	0.078	0.076	0.076
Tobermory	0.070	0.060	0.061	0.061	0.062	0.065	0.062	0.061	0.061
Ullapool	0.089	0.079	0.080	0.082	0.084	0.088	0.076	0.077	0.078
Stornoway	0.067	0.064	0.064	0.065	0.066	0.068	0.063	0.063	0.064
Kinlochbervie	0.083	0.073	0.073	0.075	0.077	0.081	0.070	0.071	0.072
Lerwick	0.058	0.058	0.058	0.058	0.058	0.059	0.058	0.058	0.058
Aberdeen	0.080	0.078	0.078	0.079	0.080	0.083	0.077	0.077	0.077
Leith	0.080	0.079	0.079	0.080	0.080	0.083	0.080	0.079	0.079
North Shields	0.060	0.058	0.057	0.057	0.058	0.061	0.062	0.059	0.059
Whitby	0.123	0.123	0.123	0.122	0.122	0.122	0.128	0.125	0.124
Immingham	0.125	0.131	0.132	0.135	0.138	0.144	0.129	0.130	0.130
Cromer	0.090	0.085	0.085	0.087	0.089	0.095	0.088	0.085	0.085
Lowestoft	0.072	0.065	0.065	0.065	0.067	0.073	0.072	0.067	0.066
Harwich	0.102	0.097	0.097	0.097	0.099	0.104	0.101	0.097	0.097
Sheerness	0.096	0.096	0.097	0.100	0.104	0.112	0.096	0.095	0.095
Jersey	0.114	0.111	0.111	0.111	0.110	0.110	0.113	0.112	0.112
St Marvs	0.083	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082
Newlyn	0.096	0.094	0.094	0.094	0.094	0.095	0.094	0.094	0.094
Plymouth	0.081	0.080	0.080	0.079	0.079	0.079	0.081	0.080	0.080
Weymouth	0.053	0.051	0.051	0.051	0.051	0.052	0.053	0.052	0.052
Bournemouth	0.071	0.068	0.068	0.068	0.068	0.069	0.069	0.068	0.068
Portsmouth	0.087	0.084	0.083	0.083	0.083	0.083	0.086	0.084	0.084
Newhaven	0.078	0.076	0.076	0.075	0.075	0.075	0.079	0.077	0.077
Dover	0 116	0.113	0.113	0.112	0.113	0.114	0.115	0.113	0.113
Maar	0.004	0.000	0.001	0.000	0.000	0.004	0.004	0.000	0.000
Mean	0.094	0.092	0.091	0.092	0.092	0.094	0.094	0.092	0.092

Reference pressure tests

- 3 runs: 1010, 1012, 1014 hPa
- Effectively moves everything up/down
- North/South spatial pattern

NEMO vs CS3X

• But overall statistics very similar

Residual								
Metric	CS3X	NEMO- Surge	Diff					
RMSE	0.098	0.096	-0.002					
Mean error	-0.036	-0.036	0.000					
Max error	0.568	0.582	0.014					
SI	0.431	0.419	-0.012					
N. STD	0.994	0.976	-0.018					
Corr.	0.902	0.904	0.003					

Skew surge

Metric	CS3X	NEMO- Surge	Diff
RMSE	0.095	0.096	0.000
Mean error	-0.036	-0.043	-0.007
Max error	0.401	0.401	0.000
SI	0.438	0.420	-0.018
N. STD	1.009	0.967	-0.042
Corr.	0.902	0.905	0.003

www.metoffice.gov.uk

Full report: O'Neill, C.; Saulter, A.; Williams, J.; Horsburgh, K., 2016: NEMO-surge: Application of atmospheric forcing and surge evaluation Met Office Forecasting Research Technical Report 619, available online © Crown Copyright 2016, Met Office

www.metoffice.gov.uk

Full report: O'Neill, C.; Saulter, A.; Williams, J.; Horsburgh, K., 2016: NEMO-surge: Application of atmospheric forcing and surge evaluation Met Office Forecasting Research Technical Report 619, available online © Crown Copyright 2016, Met Office

ullet

Longer term...

- Lots of potential for future science changes:
 - Data assimilation
 - Wave coupling
 - Higher grid resolution (eg AMM15 in development)
 - Varying bottom roughness
 - Wetting and drying
 - Density
 - ...

www.metoffice.gov.uk

Questions?

