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1 Introduction 
Despite enormous improvements over the years, there are still numerous coastal inlets 
and some other smaller regions for which EMODnet-bathymetry has not been able to 
find surveys and fully achieve the goal of mapping all European seas and coasts. In the 
EMODnet central portal the bathymetry section also contains a source layer that shows 
this very well. All coastal areas marked as grey (GEBCO) were not covered with surveys 
yet. Also, there are inlets where the land-sea mask is not set as sea. This is for example 
the case where the Loire River runs into the ocean at Saint Nazaire. The current 
EMODnet grid provides data until the bridge but lacks data inland from the bridge. In 
summary, there are areas where there is currently a lack of available surveys, that is 
now filled by interpolation or excluded by the land-sea mask. This is of course a valid 
representation of the status, since both the source identifiers and the land-sea mask 
make the lack of data visible to the users.  However, for several applications of coastal 
bathymetry, especially those that make use of numerical models, this may lead to large 
errors that also deteriorate the results in the surrounding region. For example, a tidal 
model will experience a reflection of the tidal wave at the Saint Nazaire bridge, where in 
reality tides will enter into the estuary and to a large extend be dissipated there.  
In this report we describe a methodology based on generative AI to generate one (or 
multiple) plausible realizations of the missing areas. These estimates will necessarily be 
quite inaccurate but may nonetheless represent several important features realistically. 
In the future we aim to fill the existing gaps in the gridded bathymetry with such a tool, 
if only to bridge the gap until surveys become available. 
To assess the performance of the inpainting, a case study is presented for the Humber 
Estuary. For comparison, alternative estimates of the bathymetry are derived based on 
two methods. The first method uses the propagation of wind waves as visible on 
Sentinel-2 imagery. The second method uses the Water Index also derived from 
Sentinel two in combination with data from a tide-gauge. 
 

 

Figure 1 EMODnet gridded bathymetry (2023 release) for Loire River near saint Nazaire. Note the 
lack of bathymetry in the estuary. 
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Figure 2 Looking landward (east) from saint Nazaire bridge, showing the area where we will aim to 
fill the gap in bathymetry (source Google Streetview) 

 

2 Methods 

2.1 Inpainting methods for bathymetry 

 

This task aims to develop a generative machine learning approach, that fills the 
bathymetry in areas where there is a gap in the data, with the aim of generating a 
plausible bathymetry. This goal is different from the best guess, which will in general be 
very smooth since smaller details cannot be predicted in the right locations. The result 
of best-guess interpolation therefore lacks detail. Here we aim to generate a similar 
amount of detail. The rationale is that for several applications it is more useful to 
generate a channel in an estuary in the wrong position, than no channel at all. 

In recent years, several generative AI techniques have been developed for images. Since 
a gridded bathymetry is conceptually not very different from an image, we look towards 
this pioneering field for possible approaches. In this study, we based our work on the 
paper by Song etal (Song2020). The key concept has later been popularized as stable 
diffusion. The method used here is similar to the ‘stable diffusion’ model, but also 
different in several ways. The main idea (see also Figure 3) is to gradually add noise to 
an image, step by step, until there is nothing left but noise. Next, we use these distorted 
images to train an AI model to step backwards in this sequence towards less noisy 
images. This process is unstable, but with a generative AI model can be used to create 
somewhat random samples of images. In its raw form the method will generate random 
images that have similarities with the images in the training dataset. In the method by 
Song etal the forward steps of adding noise is described by a stochastic differential 
equation. The method then uses a formulation for a reversed stochastic differential 
equation. This equation requires knowledge of the distribution of the noisy images p(t), 
but instead of trying to model this, the gradient/sensitivities are modelled directly. This 
term, the ‘score function’ is modelled with a deep-learning approach using a dataset of 
noisy images. The generation process starts with a noise only image and move step by 
step towards an image. The score function tries to identify similarities between the 
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noise and the learned images and extra noise is added to the process to avoid an early 
collapse. This implies that if the process is repeated, it will result in a different image. 

 

Figure 3 Concept of the diffusion idea and method by Song etal (source Song2020) 

In this raw form the method can often not be applied directly, instead we usually want 
to achieve a secondary goal, for example generate an image of a specific topic like a 
dog, instead of an arbitrary one. Here, we aim to only generate the missing part of the 
image but keep the part that is already known. We use a relaxation term towards the 
known part of the image for this purpose. 

For a brief illustration, the standard MNIST dataset of 60000 handwritten images was 
used. Figure 4 shows some original images on the top left. Part of the image was 
masked to mimic lacking parts of the bathymetry and on the right two samples are 
shown. Note that for example the second digit becomes 1 in the first sample, but 2 in 
the second sample. This is understandable, given that it is also for us humans hard to 
see the correct digit from the masked image and the original images are not used in the 
process, but only shown for comparison. 

 

 

 

Figure 4 Test of score-based diffusion model on MNIST dataset. 

 

To fill missing parts of the gridded bathymetry, we use small tiles (128x128) for training 
sampled randomly from the gridded bathymetry. We settled on a normalization 
method, where each 128x128 image is normalized to the unit range [0,1] individually, 
instead of applying unit range normalization to the data set as a whole. This way the 
dynamic range of the images is consistent across the data set. This partly addresses the 
issue of noisy sampled images. When applying normalization across the full data set, the 

https://yann.lecun.com/exdb/mnist/
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parts of the image we are interested in sampling will have a narrow dynamic range 
comparable to the noise scale added each time step during the diffusion process. 
Switching to a per-image normalization increases the dynamic range of the area of 
interest, separating it from the noise scale. 

Additionally on the preprocessing side, we added data augmentation to the pipeline. 
We augment the data by applying 90, 180, 270 deg rotations to the images. This way 
the training data volume increases by a factor 4. Other augmentation operations can 
still be added, but the augmentation process needs to be optimized first to avoid 
memory issues. 

Finally, we explored applying a convolutional filter to the landmasks and add it to the 
original landmasks to have non-zero weight for land pixels close to the coastline. This 
way we aim to generate more realistic coastlines when we loosen the restrictions 
during the sampling process. Currently, however, the coastline is treated as a given 
during the sampling process. 

On the sampling side we removed the final traces of noise from the sampled image by 
adding a final sampling step that, unlike the other sampling steps, does not add noise. 
With the inclusion of this final sampling step, the sampling process has two-time 
hyperparameters: the time value of the final noise adding sampling step, and the time 
value passed to the network for this extra sampling step. We performed a preliminary 
optimization of these two parameters, balancing sample speed, sample quality, and 
residual noise level. 

Although there are several aspects that we aim to improve further, we will now first 
perform a few more realistic tests, automate this procedure and evaluate the 
performance more from a user perspective. The figures below show some test cases, as 
they are applied routinely during the training cycles. There are still some biases, but it is 
becoming harder to see which image is generated and which one measured. Note that 
these examples are small patches (128x128 cells) of the D5 tile of the 2023 release of 
the EMODnet gridded bathymetry. 

 

Figure 5 Examples of sampled bathymetry images The original images (a,d) the applied masks 
indicating the areas to sample (b,e) and the final sampled image (c,f). Figures d-f show an example 
where the sampled bathymetry is further removed from the original. This highlights our intention 
to primarily generate realistic looking bathymetry rather than reconstructing the unknown 
bathymetry as accurately as possible. 
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2.2 Satellite derived bathymetry using wave kinematics 

In addition to the inpainting method, also a physics-based approach was applied, which estimates 
local water depths from wave kinematics, using satellite imagery. For this approach, the inter-band 
time shift between Sentinel2 color bands is used to estimate wave frequencies, ω (Bergsma et al., 
2019). In combination with the spatial properties of the waves and specifically their wave number, 
k, a depth, d, can be estimated via the linear dispersion relationship: 

𝜔2 = 𝑔𝑘 tanh 𝑘𝑑 , 

where g is the gravitational acceleration. For a group of frequency-wavenumber pairs, this 
equation can be solved for d using non-linear regression (Young et. al, 1985). Here, a standard 
Levenberg Marquardt regression is used. The pixel resolution of the RGB bands is Δxpixel  = 10 m, 
which means that the Nyquist limit for wave lengths is 20 m. In standard signal processing practice 
typically at least 2 wavelengths are desired for Fourier analysis, which translates to waves with 
lengths larger than 40m. For the specific case of analyzing Sentinel2 images Bergsma et al., 2019 
suggest wave lengths of at least 70-80 m. Here, we set the limit to 40 m. 

In this study the blue and the red band are used to derive wave frequencies. The time shift between 
these two bands is Δt = 1.005 s. The local phase-shift φ’ between the blue and the red band, divided 
by the time shift, provides the local wave frequency, ω = φ’/Δt. Local phase-shifts φ’ are computed 
through Gabor analysis. This involves the construction of a computational grid, of which each cell 
is analyzed using local two-dimensional Fourier transforms. These local transforms yield a 
wavenumber spectrum for the blue band and a wavenumber spectrum for the red band, and the 
difference between these two spectra gives the phase-shift φ’ for each wavenumber k.  

In this study a spacing of Δxgrid = 200 m is used between grid points, which means that the resolution 
of the computed bathymetry map is 200 m. Each grid point is analyzed using a grid cell of size 
480x480 m2, which represents a balance between staying local on the depth estimate while 
allowing sufficiently long waves to be captured in a grid cell. 

a)  

b) 
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Figure 6 Gabor analysis for SDB from wave-kinematics. a) A computational grid of points is used to 
b) locally determine wavenumbers and wave frequencies from the blue and red bands of a 
Senintel2 image. Using the linear dispersion relationship, these wavenumbers and wave 
frequencies yield a representative local depth estimate at each grid point.  

 

3 Use case: Humber 

 

3.1 Status and goals 

As a demonstration area of the deep learning methods, we choose the Humber estuary in the 
United Kingdom. This choice is motivated by the fact that large sections of the bathymetry data in 
that area are sourced from GEBCO (grey areas in Figure 8). The lower resolution of the source data 
makes these sections good candidates for reassessing the bathymetry. The areas are easily 
identifiable through the source index layer of the bathymetry data product, as they are already 
included in the release of the data product. This provides us with a mask indicating on a grid cell 
level which areas are to be reassessed. The goal of this use case is to demonstrate the capabilities 
of the deep learning methodologies and to provide a guide for further improvements. 
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Figure 7: Map of the bathymetry source index in the Humber estuary. The grey polygons indicate 
areas sourced from GEBCO. Screenshot taken from the online EMODnet viewer. 

3.2 Inpainting results 

As an input, the inpainting network requires a sampling mask indicating which pixels are to be 
sampled and which pixels act as context for the sampling process. The sampling mask is a 
combination of a land-sea mask and a mask indicating GEBCO pixels, both of which are extracted 
from the source index layer. The mask is created by setting all pixels sourced from GEBCO to 1 
(indicating it should be sampled), while all others are set to 0 (indicating it should act as context). 
The mask used is shown in Figure 8. 

 

Figure 8 Sampling mask: The mask indicating which pixels need to be sampled, derived from the 
bathymetry source layer. 

The network used for inpainting is trained on 128x128 pixel patches of bathymetry data. This sets 
the size of both the network input and output during sampling. The target area of the use case is 
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larger than this predetermined size, so it needs to be broken down into smaller 128x128 patches. 
We create these patches with a certain amount of overlap. The overlap aims to create a sense of 
continuity over the whole area as pixels sampled as part of one patch are then used as context 
information for the neighbouring patches (if the pixel lies within the overlap). How much 
neighbouring patches overlap is set beforehand and acts as another hyperparameter to the 
sampling process. Each patch is normalized individually to [0,1], after which the pixels indicated by 
the sampling mask are sampled. The patch is then rescaled to its original dynamic range and is 
inserted back into the overall bathymetry data. The sampling mask is updated to 0 everywhere 
each time a patch is sampled. This makes sure that each pixel is sampled only once (the first time 
that pixel is encountered when running over the patches) and acts as context for subsequent 
patches. 

Next the order in which the patches are sampled needs to be set. We do this by first finding the 
patch with the least amount of GEBCO pixels (any patch with 0 GEBCO pixels is removed from the 
list). All pixels in this patch are set to 0 in the sampling mask and the number of GEBCO pixels for 
all other patches is recounted. We then move to the patch with the next lowest amount and skip 
any patch we already sampled when recounting the number of GEBCO pixels. This constant 
recounting ensures that at any moment during sampling we are always looking at the patch with 
the least number of unknown pixels, or in other words the patch with the most available context 
information. This way we aim to have maximum continuity or cohesion across the overall sampling 
area. A typical example of the sampling order is shown in Figure 9. 

 

Figure 9 Patch sampling order: The overall area is subdivided into smaller overlapping patches, 
after which the sampling order this determined through the number of GEBCO pixels per patch. An 
overlap of 14 pixels on either side was used for this order. The dark blue areas are not sampled at 
all since these have non-GEBCO bathymetry data. 

 

Data generation through diffusion allows us to easily generate multiple realizations by drawing 
new starting points of the sampling process which by design follow a Gaussian distribution. In 
Figure 10 we show 5 examples of sampled bathymetry for the Humber estuary. For these examples, 
the network was trained on 4000 images from the D5 tile of the bathymetry data, meaning that 
the Humber estuary is an out-of-sample area as it is part of the D4 tile. The 128x128 sampling 
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patches were created with an overlap of 14 pixels on either side, with the sampling order given in 
Figure 9. 

 

Figure 10 Sampled bathymetry: Examples of sampled bathymetry data for the Humber estuary (a-
e) with the bathymetry data including GEBCO in f). 

 

From the examples shown in Figure 10a-e, it is clear that the intent of generating bathymetry 
with a higher level of detail than the low resolution GEBCO data is achieved. The intent of 
generating more realistic looking bathymetry is not fully reached as certain features we expect to 
see in an estuary like the Humber are absent. For example, we expect a deeper channel across 
the entire length of the estuary, with potentially some branches and large tidal flats that have an 
increasing elevation towards the coast.  This result is not unexpected as no additional information 
on estuary characteristics was provided during training. Furthermore, the training set was 
relatively small (4000 128x128 images from tile D5) meaning that the number of estuaries like the 
Humber in the training set is very low, if any at all. This points towards a need to train on a larger 
and more diverse dataset. 
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In addition, we did not filter the data based on its quality, but there are several indicators 
available for the EMODnet gridded bathymetry that potentially allow to give a larger weight to 
reliable data. Figure 11 shows an example with both the source index and the quality index, 
which in this example align with the artefacts observed in the bathymetry. 

 

Figure 11 Sample bathymetry tile (left), with source (middle) and quality index (right). The 
transitions between the different sources are clearly visible. Note, that we searched for a clear 
example. 

 

We also note that the tendency to sample the full dynamic range we reported on earlier is clearly 
visible in the eastern most parts of the estuary. These are areas where a large majority of the 
bathymetry data is sourced from GEBCO. These areas then are sampled with little context, the 
only context coming from the overlap with the previous patch, itself being largely resampled 
GEBCO pixels. 

This lack of context is also linked to a related bias, the tendency for outliers or exaggerated 
depths. This tendency is most pronounced in patches with little context to reign in outliers, and in 
patches at the end of the sampling order. The reason for the latter is that outliers can propagate 
through the overall sampling area. Note that the value of a sampled pixel can be outside the strict 
[0,1] interval the patch is normalized to, implying that the dynamic range of the sampled patch is 
larger than that of the original patch. If such an outlier is generated in the overlap between two 
patches, the dynamic range of the other patch will as a result also be increased. This leads to a 
tendency for patches later in the sample order to have exaggerated dynamic range. 

Finally, we note that in the eastern and middle parts of the estuary there are lines of bathymetry 
data not coming from GEBCO, instead coming from research vessel surveys. These single pixel 
lines act as context when sampling the surrounding bathymetry. In most generated samples 
these lines are clearly visible, albeit slightly broadened. This indicates that there was not enough 
context provided to properly incorporate these bathymetry data into the newly sampled data. As 
such there is a minimal context data volume needed to steer the model during sampling towards 
realistic bathymetry. Data below this threshold seem to be largely ignored, only broadened to 
avoid sharp discontinuities with the newly sampled data. 

Next, we’ll compare the AI generated bathymetry to some satellite derived products to gain more 
insight into the true nature of the bathymetry in the Humber Estuary. 

3.3 Satellite Derived Bathymetry using wave kinematics 

Initial tests using SDB from wave kinematics on the Humber case showed large differences in the 
estimated bathymetries between different years and time periods. The major causes for this were 
identified to be: 

- A limited amount of usable Sentinel 2 images due to cloudiness 
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- Limited penetration of significant wave signals through the Humber entrance 

- The large tidal range 

Since wave penetration into the estuary is limited, an area of ~20 km2 around the lower estuary 
was chosen for analysis, where some wave footprint was deemed to be present. 

A pragmatic approach to alleviate these issues simultaneously was to generate an average 
bathymetry for the complete period 2017-2024 for which Sentinel 2 images were available. It 
meant that all usable data in terms of cloudiness and significant wave footprint could incorporated, 
and it aimed to average out tidal fluctuations on the depth results.  

 

Figure 12 Humber average SDB 2017-2024  

Visual comparison with a Humber nautical chart (ABP Humber Estuary Services, 2024), suggests 
reasonable agreement in the area offshore of the harbour dam “Spurn Head”. The Characteristic 
shoals offshore of Spurn Head, but also the large shoal in the south is captured. The official 
elevations of these shoals approximately range between -0 to -6m. The SDB results appear to 
overestimate these depths to some degree as they range more between 4-7 m, while the overall 
feature shapes are captured. The channel elevations typically range from -10 to -20 m depth. This 
is generally captured by the SDB, albeit a direct comparison was not feasible in this initial study. 

Bathymetry estimates on the inside of the entrance at Spurn Head are noisy and suggest a shallow 
estuary. This is partly correct, yet the deep channel is not captured, probably due to insufficient 
wave signal and the intertidal flats are overestimated in depth. Hence, while the inside regions of 
Humber are hard to estimate from wave properties, the SDB from wave kinematics shows potential 
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for estimating bathymetry in data scarce regions on the ocean side of Spurn Head.

 

Figure 13 Nautical chart of Humber estuary inlet (for detail see: ABP Humber Estuary Services, 2024) 

3.4 Satellite Derived Bathymetry from land-water detection 

In the shallow inter-tidal parts of the estuary, one can also use the Water index (NDWI) derived 
from a large stack of Sentinel-2 images to assess the bathymetry. Figure 14 clearly shows the small 
channels and increasing slope towards the coast. The highest parts of the area (in dark blue) only 
become wet a small fraction of the time. A comparison with the data from a nearby tide-gauge at 
Immingham, shows that the upper slope is likely to be around 3 meters above mean sea level. The 
upper slope in the EMODnet 2023 release was only just above mean sea level. The Highest 
Astronomical Tide (HAT) values for this region are around 3.5 meter above mean sea level and 
could here provide a proxy for the heights near the coastline. 

 

  

Figure 14 Left panel shows Water index and right panel the EMODnet gridded bathymetry for 
the northeastern part of the Humber Estuary. 
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Figure 15 measured water-level at Immingham 

4 Conclusions and recommendations 

4.1 Bathymetry inpainting 

In this and previous reports we outlined a methodology for generating bathymetry data using 
score-matching diffusion machine learning models. We have outlined a strategy for training these 
models on the EMODnet bathymetry data, how to sample new data from a trained model, and how 
to apply this to larger areas where reassessment of the bathymetry data is desirable. Following this 
outline we have implemented a pilot, trained on a small subset of the EMODnet bathymetry data 
and applied it to the use case of the Humber estuary. The results from this use case provide an 
initial indication of performance, pitfalls, and directions for improvement. Overall, the 
methodology is promising, creating samples at a higher level of detail than a best guess approach. 
However, the level of realism currently has room for improvement, and the generated bathymetry 
shows some clear biases. Based on the result illustrated in this report we provide a series of 
recommendations for improvement, roughly split into two categories: data requirements and 
technical/architectural requirements. 

Data requirements: 

- Train the model on the full EMODnet bathymetry dataset. So far, the model has only been 
trained on a subset of 4000 128x128 images from the D5 tile of the bathymetry data. This 
relatively low data volume yields a quicker iteration speed when developing the model, 
but also raises issues with representation of the use case area in the training data. 

- Data augmentation techniques. The pilot model was trained using data augmentation of 
rotations over multiples of 90 degrees of the images. However, since the data is provided 
in a geographical coordinate system, this method of data augmentation is not entirely 
valid. Alternate methods of data augmentation that respect the geographical coordinate 
system are a better fit for this goal. 

- Additional data sources. We have seen that there appears to be a minimal amount of 
context data needed to properly guide the model during sampling. In areas where there is 
not enough non-GEBCO bathymetry data present in the EMODnet dataset, additional 
sources of context are needed. These could be bathymetry estimates from other 
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techniques, or for example data on estuary characteristics. The latter class, i.e. context 
data that is not bathymetry, will have to be provided during training as data labels. 

Technical requirements: 

- Network architecture. There is considerable freedom when designing a network 
architecture for score-based diffusion models, one that has so far largely been unutilized 
is this pilot. Especially when the training data increases, either in volume by using the 
entirety of EMODnet bathymetry, or in data type by providing data labels, the network 
architecture needs to change accordingly to properly utilize the new data. Additionally, it 
is worth exploring architectures that are more flexible regarding input size as an alternative 
to the patch-based approach for sampling larger areas used here. 

- Sampling strategies. Currently the sampling process for an individual patch uses relatively 
simple approach as far as sampling diffusion models goes. There has been a lot of research 
into both increasing the sampling speed and the final sample quality for diffusion models. 
It is worthwhile investigating the benefits of more state-of-the-art sampling approaches. 
Additionally, a for the case of the network architecture, if the dataset is expanded to 
include data labels, the sampling process will need to adapt accordingly. 

4.2   Satellite wave kinematics 

In this report a methodology was described to estimate bathymetry from wave kinematics 
observed in Sentinel2 satellite imagery. The method involves Gabor analysis of the blue and red 
bands in the Sentinel2 imagery. An inherent time shift of ~1s between these bands allows 
estimation of wave frequencies, which together with estimated wavenumbers yield an estimate of 
local depths, as per the linear dispersion relationship of freely propagating ocean waves.  On the 
ocean side of Humber estuary, the results correctly suggest the presence of bathymetric features 
like shallow shoals and the deep channel.  

In this initial analysis, depth errors have not been directly quantified, yet comparison with existing 
navigational charts suggests depth estimates of shoals to be slightly overestimated by ~2-3 m, 
while estimated channel depths cover the correct depth range of approximately 10-20m. On the 
inside of the estuary, depth estimates are noisier and flatter, losing the ability to distinguish 
intertidal flats from the deep channel. Major reasons for this are limited wave penetration into the 
Humber estuary and the large tidal range, whose effects have not been accounted for on case-by-
case basis.  

Recommendations for future improvement are: 

- Incorporation of tidal effects 

- Higher time resolution of SDB bathymetry to estimate also morphodynamics 

- Improvement of image preselection based on wave footprint 

4.3 Satellite derived intertidal bathymetry and coastline 

The large tidal range in the Humber Estuary results in tidal flats and coastal slopes that could be 
estimated using satellite derived intertidal bathymetry. This would provide additional input for the 
AI model to generate a more plausible solution also for the deeper parts. 
At a larger scale, one can use the high-water level at the coast from a tide model as an indicator of 
the elevation at the coast to guide normal interpolation. Since this procedure is probably simple to 
implement, it can serve as a temporary solution, until better ones are ready for production.  



 

Deep-learning methodology for assessing bathymetry between coastline and foreshore [D3.12] 

 

Page 15  
 

 

A. References 
- ABP Humber Estuary Services, 2024. 

https://www.humber.com/Estuary_Information/Marine_Information/Chart_Catalogue/C
urrent_Humber_Charts/, file: Humber Inner Approaches Annual 2016-2021 with Haile 
Sand inspection - Surveyed 27th April 2023, accessed on 16.12.2024. 

- Bergsma2019 Bergsma, E. W., Almar, R., & Maisongrande, P. (2019). Radon-augmented 
sentinel-2 satellite imagery to derive wave-patterns and regional bathymetry. Remote 
Sensing, 11(16), 1918. 

- Song2020 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. 
(2020). Score-based generative modeling through stochastic differential equations. arXiv 
preprint arXiv:2011.13456. 

- Young1985 Young, I. R., Rosenthal, W., & Ziemer, F. (1985). A three‐dimensional analysis 
of marine radar images for the determination of ocean wave directionality and surface 
currents. Journal of Geophysical Research: Oceans, 90(C1), 1049-1059. 

 

https://www.humber.com/Estuary_Information/Marine_Information/Chart_Catalogue/Current_Humber_Charts/
https://www.humber.com/Estuary_Information/Marine_Information/Chart_Catalogue/Current_Humber_Charts/
https://abpnotify.co.uk/AbpPublishedDocuments/_Humber%20Inner%20Approaches%20Annual%202016-2021%20with%20Haile%20Sand%20inspection%20-%20Surveyed%20%2027th%20April%202023.pdf
https://abpnotify.co.uk/AbpPublishedDocuments/_Humber%20Inner%20Approaches%20Annual%202016-2021%20with%20Haile%20Sand%20inspection%20-%20Surveyed%20%2027th%20April%202023.pdf

