Keyword

Northwest Pacific Ocean (180W)

11 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
From 1 - 10 / 11
  • Ieodo Ocean Research Station (Ieodo ORS) opened in June 2003, and was built to help advance the understanding of the dynamics of the East China Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Ieodo ORS is located 149 km from Marado, at the southernmost tip of Jejudo (commonly referred to in scientific literature as Jeju Island or previously as Cheju Island), southwest of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Ieodo” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2007. Ieodo ORS stands 36 m in height above the datum level (DL) and consists of a boat landing plus 6 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, one barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Ieodo ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 5, 17.5, and 38 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Socheongcho Ocean Research Station (Socheongcho ORS) opened in October 2014, and was built to help advance the understanding of the dynamics of the Yellow Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Socheongcho ORS is located in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Socheongcho” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2016. Socheongcho ORS stands 42 m in height above the datum level (DL) and consists of a boat landing plus 7 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Accommodation Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, two barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Socheongcho ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 5.5 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities are on the Accommodation Deck and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • This dataset describes the dissolved cobalt and manganese distributions in the East China Sea. Other parameters such as salinity, water temperature, potential density, dissolved oxygen, and nutrient (nitrate, phosphate, and silicate) concentrations are also included. Seawater samples used for generating this dataset were obtained during the KS-15-6 cruise onboard R/V Shinsei Maru between July and August 2015 (Stn1 to Stn15), and during the KH-15-3 cruise onboard R/V Hakuho Maru in October 2015 (F1, D4, B8, and I1). Dissolved cobalt concentrations were determined using cathodic stripping voltammetry at the University of Tokyo and by using inductively coupled plasma - mass spectrometry (ICP-MS) at Kanazawa University, Japan. Meanwhile, dissolved manganese concentrations were determined using ICP-MS at both the University of Tokyo and Kanazawa University. All samples were irradiated with ultraviolet light before analysis. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Socheongcho Ocean Research Station (Socheongcho ORS) opened in October 2014, and was built to help advance the understanding of the dynamics of the Yellow Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Socheongcho ORS is located in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Socheongcho” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2016. Socheongcho ORS stands 42 m in height above the datum level (DL) and consists of a boat landing plus 7 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Accommodation Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, two barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Socheongcho ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 5.5 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities are on the Accommodation Deck and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Socheongcho Ocean Research Station (Socheongcho ORS) opened in October 2014, and was built to help advance the understanding of the dynamics of the Yellow Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Socheongcho ORS is located in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Socheongcho” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2016. Socheongcho ORS stands 42 m in height above the datum level (DL) and consists of a boat landing plus 7 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Accommodation Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, two barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Socheongcho ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 5.5 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities are on the Accommodation Deck and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Ieodo Ocean Research Station (Ieodo ORS) opened in June 2003, and was built to help advance the understanding of the dynamics of the East China Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Ieodo ORS is located 149 km from Marado, at the southernmost tip of Jejudo (commonly referred to in scientific literature as Jeju Island or previously as Cheju Island), southwest of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Ieodo” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2007. Ieodo ORS stands 36 m in height above the datum level (DL) and consists of a boat landing plus 6 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, one barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Ieodo ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 3, 20.5, and 38 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck.   Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Socheongcho Ocean Research Station (Socheongcho ORS) opened in October 2014, and was built to help advance the understanding of the dynamics of the Yellow Sea, including its influence on Korea’s marine, terrestrial, and atmospheric environments, via the continuous and simultaneous multidisciplinary observation of local air and sea environments. Socheongcho ORS is located in the central Yellow Sea about 50 km off the western coast of the Korean Peninsula. Its steel-jacket framed tower-type platform was built near the submarine rock named “Socheongcho” by the Korea Institute of Ocean Science and Technology (KIOST). The Korea Hydrographic and Oceanographic Agency (KHOA) has operated this platform since January 1, 2016. Socheongcho ORS stands 42 m in height above the datum level (DL) and consists of a boat landing plus 7 decks (Bottom Deck, Intermediate Deck, Cellar Deck, Accommodation Deck, Main Deck, Roof Deck, and Heli Deck). Most of its meteorological instruments and sensors are installed on the Roof Deck, including two anemometers, two barometer, two air temperature sensors, and two relative humidity sensors. Ocean temperature and salinity have been relatively consistently measured at Socheongcho ORS. Aanderaa inductive-type conductivity-temperature (CT) sensors are installed at depths of 5.5 m throughout the entire year, operating at 1 min sampling intervals by KHOA. Residential facilities are on the Accommodation Deck and the electrical control room are on the Main Deck, while a seawater desalination system and a diesel generator system are installed on the Cellar Deck. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    This visualization product displays the density of floating micro-litter per net normalized per km² per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. Densities were calculated for each net using the following calculation: Density (number of particles per km²) = Micro-litter count / (Sampling effort (km) * Net opening (cm) * 0.00001) When the number of microlitters or the net opening was not filled, it was not possible to calculate the density. Percentiles 50, 75, 95 & 99 have been calculated taking into account data for all years. Warning: the absence of data on the map does no't necessarily mean that they do not exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area.

  • Categories  

    This visualization product displays the density of floating micro-litter per net normalized per km² per year from specific protocols different from research and monitoring protocols. EMODnet Chemistry included the collection of marine litter in its 3rd phase. Before 2021, there was no coordinated effort at the regional or European scale for micro-litter. Given this situation, EMODnet Chemistry proposed to adopt the data gathering and data management approach as generally applied for marine data, i.e., populating metadata and data in the CDI Data Discovery and Access service using dedicated SeaDataNet data transport formats. EMODnet Chemistry is currently the official EU collector of micro-litter data from Marine Strategy Framework Directive (MSFD) National Monitoring activities (descriptor 10). A series of specific standard vocabularies or standard terms related to micro-litter have been added to SeaDataNet NVS (NERC Vocabulary Server) Common Vocabularies to describe the micro-litter. European micro-litter data are collected by the National Oceanographic Data Centres (NODCs). Micro-litter map products are generated from NODCs data after a test of the aggregated collection including data and data format checks and data harmonization. A filter is applied to represent only micro-litter sampled according to a very specific protocol such as the Volvo Ocean Race (VOR) or Oceaneye. Densities were calculated for each net using the following calculation: Density (number of particles per km²) = Micro-litter count / (Sampling effort (km) * Net opening (cm) * 0.00001) When the number of microlitters or the net opening was not filled, the density could not be calculated. Percentiles 50, 75, 95 & 99 have been calculated taking into account data for all years. Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the National Oceanographic Data Centre (NODC) for this area.

  • Aimed at understanding the mesoscale eddy’s effect on the subduction and dissipation of the North Pacific Subtropical Mode Water, a field experiment namely the Pacific Mode Water Ventilation Experiment (P-MoVE) was carried out in the northwestern Pacific Ocean ((Xu et al., 2016)-[https://doi.org/10.1038/ncomms10505]). During 27 March to 5 April 2014, we conducted 54 station surveys in an anticyclonic eddy (AE) and a nearby weak cyclonic eddy (CE) with a spacing of 0.25° (Figure 1). The conductivity-temperature-depth system (CTD 911plus, Sea-Bird Electronics) and microstructure probe (MSS-90, Sea & Sun Technology) were deployed to obtain temperature-salinity profiles and microscale velocity shear at these stations. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.