From 1 - 3 / 3
  • Since 2015, 12 representative sites of the Mahoran reefs have been equipped on the sub-surface with probes measuring the temperature every 10 minutes (every 1 hour since mid-2021). The data from these probes are collected every 2 months by the Operations Department of the Parc marin de Mayotte. The aim is to better understand seasonal variations and bleaching phenomena. A computer program developed by the PNMM makes it possible to analyse these data. Regularly, new probes are purchased (NKE) and calibration tests are carried out. Depth: Baie de Boueni: 3,67 Double barrière: 4,15 Grand Récif Nord Est: 3,04 Longoni: 5,02 Passe bateaux sud: 3,25 Passe en S - bouée 3: 4,39 Passe en S - externe: 4,15 Saziley: 4,43 Surprise: 2,98 Tanaraki: 2,92 Hajangoua: 4,55   Cood : Baie de Boueni: -12.9117722; 45.1349777 (-12°54.726'S; 45°08.099'E) Double barrière: -13.00181667; 45.11048333 (-13°00.109'S; 45°06.629'E) Grand Récif Nord Est: -12.74848333; 45.27966667 (-12°44.909'S; 45°16.780'E) Hajangoua: -12.8383888; 45.2401333 (-12°49.033'S; 45°13.873'E) Longoni: -12.71003; 45.16542 (-12°42.602'S; 45°09.925'E) Passe bateaux sud: -12.9815555; 44.9880833 (-12°58.881'S; 44°59.296'E) Passe en S - bouée 3: -12.86556667; 45.27113333  (-12°51.934'S; 45°16.268'E) Passe en S - externe: -12.87976667; 45.27708333  (-12°52.780'S; 45°16.625'E) Saziley: -12.98563333; 45.18245 (-12°59.138'S; 45°10.947'E) Surprise: -12.64603333; 45.13325 (-12°38.762'S; 45°07.995'E) Tanaraki: -12.76168333; 45.06656667 (-12°45.701'S; 45°03.994'E) Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The purpose of this publication is to give access to the analytic data set which has been used in a paper submitted to the journal Marine Geology (Torelli et al., submitted). This paper proposes a general study of the organic matter (OM) distribution within the recent Quaternary sediments of the Mozambique Channel (southern part of the east African margins). The study was conducted in the framework of the PAMELA (PAssive Margin Exploration LAboratory) research project (Bourillet et al., 2013). This study is mainly based on Rock-Eval 6 (RE6) analyses of samples collected during several marine surveys: Pamela-Moz01 (Olu, 2014), Pamela-Moz04 (Jouet and Deville, 2015) and Pamela-Moz08 (Khripounoff, 2016; Fig. 1). 394 RE6 analyses were performed on samples collected with the Küllenberg corer (recovered core length up to 12 m) of the R/V Atalante (Pamela-Moz01 survey) and the Calypso corer (recovered core length up to 33 m) of the R/V Pourquoi Pas? (Pamela-Moz04 survey), 11 RE6 analyses on samples collected with an interface multicorer (30-40 cm maximum penetration), and 101 RE6 analyses on samples collected with sediment traps in moorings located 47 m above seabed. We provide here the whole RE6 analyses (Table 1) and the correlation made between RE6 analyses and LECO elemental analyses concerning the total carbon (Tables 2 and 3). The analysis of samples collected with particle traps within the deep-water areas of the Mozambique Basin has shown that the OM is transported by turbidite and/or contour currents and deposited while preserving Total Organic Carbon (TOC) contents between 1.5 and 3%Wt. However, the sedimentary OM is largely oxidized (Oxygen Index > 300 mg CO2/g TOC) and only a small amount of TOC (< 0.5%Wt) is preserved within the recent sediments of the distal area of the Zambezi turbidite system at water depths below 2500 m. Interface sediments sampled to a maximum depth of 40 cm, have shown intermediate TOC values between those collected in the particle traps and those from piston cores suggesting that the degradation of the OM is mainly active at the water-sediment interface. This OM oxidation and degradation process in the deep-water domains of the Mozambique Basin is probably due to the conjugate effects of low sediment accumulation rate and high permeability of the coarse-grained sediments but also to important bottom currents that promote the remobilization and the rearrangement of fine grained sediments.   References   Bourillet, J.F., Ferry, J.N., Bourges, P., 2013. PAMELA, Passive Margins Exploration Laboratories. https://dx.doi.org/10.18142/236. Jouet, G., Deville, E., 2015. PAMELA-MOZ04 cruise, R/V Pourquoi Pas? https://doi.org/10.17600/15000700. Khripounoff, A., 2017. PAMELA-MOZ08 cruise, R/V Antea. https://doi.org/10.17600/17003900. Olu, K, 2014. PAMELA-MOZ01 cruise, R/V L'Atalante, https://dx.doi.org/10.17600/14001000. Torelli, M., Battani, A., Pillot, D., Kohler, E., Lopes De Azevedo, J., Kowalewski, I., Pastor, L., Brandily, C., Schmidt, S., Jouet, G., Deville, E. (Submitted to Marine Geology). Organic matter distribution in modern sediments of the Mozambique Channel: Evidence for widespread oxidation processes in the deep-water domains. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Measurements of the currents were collected with the Ship-mounted Acoustic Doppler Current Profilers (S-ADCP) in the Indian Ocean and Mozambique Channel during the CLIM-EPARSES 1 cruise carried out in April 2019 onboard the R.V. Marion-Dufresne in the framework of the CLIM-EPARSES project (PI A.Tribollet/IRD-LOCEAN).  The project CLIM-EPARSES aims at evaluating the impact of global change (warming, acidification) over the last decades on the coral reef ecosystems in the Eparses Islands (Scattered Islands). This page is dedicated to the S-ADCP data recorded during the cruise. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.