Currents
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
-
The present sumbission includes LADCP profiles from GD standard section acquired during STOCA 2012-10 cruise.
-
This dataset includes observations of VMADCP data collected during the PRE-SWOT experiment.
-
Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope from February, 2018, to January, 2019, to investigate the water properties of the bottom water exiting the region at Cape Adare and the relationship with the seasonal cycle, winds, and tides. Mooring P2 was placed at 1750 metres depth on the slope at Cape Adare at the same location as an earlier deployment of mooring CA1 in the CALM experiment (Gordon et al., 2015). Instruments on P2 were placed at the same depths as CA1 to continue that time series. Mooring P3 was placed on the same isobath on the slope at the mouth of the Drygalski Trough to measure the water properties moving along the slope from the east. Findings from the observations are described in Bowen et al. (2021). Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in the Baffin Bay, Canadian arctic. Here, we describe the data set obtained during the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Deep water formed around the Antarctic continent drives the world ocean circulation. More than 50% of this deep water is formed within only about 10% of the Antarctic circumpolar band: the Weddell Sea. Subtle changes in the circulation of the Weddell Sea can lead to major changes in floating ice shelves, with critical implications for global sea-level, the production of deep water, and the global ocean overturning circulation. The Filchner Trough on the continental shelf in the southern Weddell Sea plays an important role for the water mass exchange between the cold water on the continental shelf and the warm water off the continental shelf: It serves as a conduit for relatively warm water to flow southward across the continental shelf toward the Filchner Ronne Ice shelf and for the dense, cold water produced underneath the ice shelf to flow northward off the continental shelf to feed Antarctic Bottom Water. Four moorings (P1, P2, P4, P5) were places within the inflow pathway of the warm water at the northern entrance to the Filchner Trough on the continental shelf, and one mooring (P6) was placed off the continental shelf over the deep ocean. The mooring time series cover the period from February 2017 to March 2021 and are used to investigate the processes controlling the on-shore transport of relatively warm water onto the shelf toward the ice shelf and the interaction of the warm water with the cold dense water. The moorings provide observations of the circulation on the continental shelf and the temperature variability on small (tidal) to large (seasonal, interannual) time scales. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between Auguest 2018 and June 2019 using 3 TCM3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in file Sensor Metadata. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between june 2021 and June 2022 using 5 TCM-3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 6 TCM-3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in the (metadata file)-[https://www.seanoe.org/data/00800/91238/data/97068.pdf]. Data are provided for each deployed instrument as two text files: current data temperature data Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between july 2019 and June 2021 using 6 TCM-3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 6 TCM-3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in the metadata file. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between July 2017 and August 2018 using 3 TCM3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in Table_TCM3EMSO_Azores 2016-2018. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
In May 2018, an unprecedented long and intense seismic-volcanic crisis broke out off the island of Mayotte (Indian Ocean) and was associated with the birth of the Fani Maoré underwater volcano. Since then, an integrated observation network has been created (REVOSIMA), with the given objective of monitoring and better understanding underwater volcanic phenomena. Recently, an unmanned submarine glider (SeaExplorer) has been deployed to supplement the data obtained during oceanographic surveys (MAYOBS) which are carried out on an annual basis. This glider is operated by ALSEAMAR and performed a continuous monitoring of 30 months of the water column with the objective to acquire hydrological properties, water currents and dissolved gas concentrations. This monitoring already showed that it is feasible and valuable to measure autonomously, continuously and at a high spatio-temporal scale, physical (TEMP, SAL, water currents) and biogeochemical parameters (O2, CH4, PCO2, bubbles/droplets, vertical speeds) over several months from a SeaExplorer glider. In particular, innovating sensing capabilities (e.g., MINI-CO2, ADCP) have shown a great potential in the context of the Mayotte seismic volcano crisis, despite technical challenges (complex algorithms, sensor capabilities, etc.). This dataset provides these physical and biogeochemical parameters from September 17, 2021 to April 02, 2024 and the quality flags associated. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.