Creation year

2022

370 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale 1:
Resolution
From 1 - 10 / 370
  • The Eurofleets+ IOPD research cruise took place from 28/06/2022 till 10/07/2022 in the Uummannaq region in West Greenland where a total of five fjords and the connecting shelf area were sampled. This data upload "Data from IOPD cruise Part 2 Water sample analysis and plankton identifications" contains: -Nutrient data of NH4, NO2, NO3, NOX, PO4 and DSi. -Chlorophyll a data. -Fatty acid profiles (in relative abundance) of the microzooplankton and mesozooplankton community. At certain stations the dominant species was picked out to have a separate fatty acid profile. -Phytoplankton identifications and counts by a FlowCam. - Zooplankton identifications of MultiNet samples by microscopy. A maximum of 10 specimen per species, per net, per sampling station were measured. - Zooplankton identifications of the Video Plankton Recorder data, accompanied with depth, temperature, salinity, turbidity, and fluorescence data from the CTD and FLNTU sensors mounted on the VPR. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in the Baffin Bay, Canadian arctic. Here, we describe the data set obtained during the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Although zooplankton was extensively studied in the North Sea, knowledge about winter zooplankton assemblages is still scarce, despite potential influence of zooplankton overwintering stocks on seasonal plankton succession and productivity. Furthermore, several economically and ecologically important fish species reproduce during winter contributing to the zooplankton community as passive members (eggs) or predators (larvae). To shed some light on winter zooplankton distribution, abundance and composition in the Southern North Sea and Eastern English Channel, we defined assemblages based on mesozoo- and ichthyoplankton data sampled between January and February 2008 using fuzzy-clustering and indicator species. Mesozoo- and ichthyoplankton (eggs+larvae) were integrated in a common analysis by using a spatial grid adapted to the datasets and defined by means of a geostatistical method developed in agronomics. Potential environmental drivers of assemblage distribution were evaluated by means of GLMM and comparison with data from 2022 facilitated insight about the inter-annual representativeness of the assemblages. Five zooplankton assemblages were found varying with regard to total zooplankton abundance, dominant and indicator taxa. Spatial variability of abiotic (dissolved nutrients, salinity, depth, temperature, organic matter in suspension, chlorophyll a), biotic variables (phyto- and microplankton composition), water masses and fish spawning grounds were revealed as potential drivers of assemblage distribution. Assemblages off the Rhine-Scheldt estuary and in the German Bight harbored the biggest zooplankton overwintering stocks that might influence the grazing pressure on phytoplankton spring production. Assemblages off the Rhine-Scheldt estuary and covering the English Channel and the Southern Bight were found to be of high importance for herring and plaice larvae. Although further analyses suggested inter-annual representativeness of the assemblages found (2008 vs 2022), the assessment of further years would be necessary to account for potential inter-annual variability. Future studies could profit from the assessment of microzooplankton facilitating insight in fish larvae feeding potential and zooplankton overwintering strategies. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • MARLEY (Monitoring deep-seA coRaL EcosYstems) is a deep seafloor observing system dedicated to the monitoring of cold-water coral habitats. The system is deployed in the Lampaul canyon off Brittany, France since August 2021 and maintained each year during the ChEReef-Obs cruises. The study site is a coral garden dominated by Madrepora oculata, located on a sedimented platform at 780 m depth. MARLEY is equipped with a CTD SBE 37-SIP, an oxygen optode Aanderaa (4330 or 4831), an ADCP Teledyne RDI Workhorse 300kHz, a turbidity sensor Wetlabs ECO NTU (sensitivity: 0-1000 NTU), a sediment trap Technicap PPS 4/3 – 24 bottles and a camera module. The camera module, which can be moved from up to 30 m from the main station, is equipped with a camera AXIS Q1786, two flash lights and a fluorometer & scattering meter SEA-BIRD ECO FLNTU. All sensors are controlled and synchronised by the Communication and Storage Front-end - 2nd generation (COSTOF2), which is also managing data storage. Optical sensors are protected from fouling by electrochlorination (20 seconds, each 6 hours). The oxygen optode is calibrated each year prior to deployment. These datasets provide raw data from the oxygen optode Aandera 4831, the CTD Seabird SBE37, the Wetlabs ECO NTU and the SEAR-BIRD ECO FLNTU covering the period 28/08/2021 to 19/01/2022, with a frequency of 15 minutes. Data from Wetlabs ECO NTU include raw counts and Nephelometric Turbidity Unit (NTU) derived from manufacturer’s calibration with Scale Factor = 0.0611 and Dark Counts = 50. Data form SEABIRD ECO FLNTU include raw counts at 695 nm (Chlorophyll) and 700 nm (Turbidity). Chlorophyll concentration (µg/l) is derived from manufacturer’s calibration with Scale Factor = 0.0180 and Dark Counts = 48. Nephelometric Turbidity Unit (NTU) is derived from manufacturer’s calibration with Scale Factor = 0.0481 and Dark Counts = 50. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska and data evaluation with discrete water and underway samples suggest near ‘weather quality’ CO2 data as defined by the Global Ocean Acidification Network. This data set describes one such data set from the CO2 Seaglider, in May of 2022. Please see publication by the same authors at https://doi.org/10.5194/egusphere-2024-1055. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • This dataset contains current data acquired between june 2021 and June 2022 using 5 TCM-3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 6 TCM-3  currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in the (metadata file)-[https://www.seanoe.org/data/00800/91238/data/97068.pdf]. Data are provided for each deployed instrument as two text files: current data temperature data Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Region: Varna lakes (Black Sea) Period of observation: 2022 Type of measurements: data from water column profiling

  • Region: Varna lakes (Black Sea) Period of observation: 2022 Type of measurements: data from water column profiling

  • Varna lakes stations (Black Sea) Period of observation: 2022 Type of measurements: data from water column profiling

  • The mooring was deployed on 15 September 2017 from Norwegian Research Vessel Lance at 80.6°N and 7.26°E (depth of 730 m) in the Yermak Pass over the Yermak Plateau north of Svalbard. It comprised 3 instruments: an upward-looking RDI 75kHz, a Long Ranger Acoustic Doppler Current Profiler (ADCP) at 340 m with 16 m vertical resolution (25 bins of 16 m each) and a 2-hour sampling time; a Seabird SBE37 measuring temperature, salinity and pressure at 348 m with 10-minute sampling time; and an Aquadopp current meter at 645 m with a 2-hour sampling time. The mooring was retrieved on the 19 July 2020 by Norwegian Icebreaker K.V. Svalbard. The present dataset features: The ADCP 50-hour high pass filtered velocities and  the Aquadopp 50-hour high pass filtered velocities. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.