From 1 - 10 / 20
  • Categories  

    Dataproduct created using the annual means of the Phytoplankton Colour Index from 1958-2006 measured with the Continuous Plankton Recorder. A mean value has been calculated per CPR standard regions. Analysis was performed on the North Atlantic Ocean and the Greater North Sea.

  • For each IHO Sea Area in the European Marine Waters (clipped), statistics on species occurrence where calculated. Each area displays the total number of observations. The attribute table contains also information on the individual observations and the occurrence of species per group (mammalia, aves, reptilia, benthos, zooplankton, phytoplankton, macroalgae and plantae). The statistics were calculated using the EurOBIS database, in 2011.

  • Categories  

    Phytobenthos community data, a large portion of the data held are monitoring data submitted for the OSPAR CEMP and HELCOM COMBINE monitoring programmes and therefore follow specific monitoring programme guidelines.

  • Categories  

    The dataset include Finnish zooplankton monitoring data from the Baltic Sea. The Finnish zooplankton monitoring program started in 1979 and is still ongoing. The sampling has normally taken place in late summer (August), but since 2014 sampling is also carried out in early summer (May-June).The zooplankton monitoring was performed by Finnish Institute of Marine Research until 2008, thereafter the Finnish Environment Institute is responsible for the monitoring program. Samples are taken using a WP-2 net (normally 2550 cm2 opening and 100 um mesh size). The monitoring follows the HELCOM COMBINE guidelines, but subsampling is done using Folsom splitter. The dataset is also accessible through the NOAA COPEPOD database.

  • Categories  

    The KPLANK database includes data on phytoplankton, covering the Finnish coastal areas as well as the offshore areas of the Baltic Sea. The quantitative data mainly stem from the Finnish national monitoring program and statutory monitoring programs. In total the database contain approximately 240 000 quantitative records including size classes. The data span from 1937 to present. The database is regularly maintained and data is added continuously.

  • Categories  

    The POHJE database includes data on benthic macrofauna, covering the Finnish coastal areas as well as the offshore areas of the Baltic Sea. The quantitative data mainly stem from the Finnish national monitoring program and statutory monitoring programs, but also data from surveys and research projects are included. In total the database contain aproximately 100 000 quantitative records including developmental stages, with a time span from 1965 to present. The database is regularly maintained and data is added continuously.

  • Categories  

    A detailed distribution of true crabs (Brachyura) in the North-East Atlantic.

  • Categories  

    Intertidal species effort based search undertaken by students (16+) and volunteer groups with support from an ecologist. During the twenty minute timed species search surveyors look for 22 species, 4 non native and 18 climate change indicator species within 1 of 3 habitats rockpools; boulders, crevices and overhangs or open rock. Abundance is recorded using a simplified version of SACFORN.

  • Categories  

    Essential fish habitat (EFH) map on Potential spawning areas for cod was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Cod (Gadus morhua) is represented by three stocks in the Baltic Sea; Eastern Baltic, Western Baltic and Kattegat cod, which is reflected in the map. “Potential spawning areas” were initially delimitated based on Hüssy (2011). In addition, the Gdansk deep as delineated by Bagge et al. (1994) was included as it sometimes contributes to reproduction of Eastern Baltic cod (Hinrichsen et al. 2016). The Gotland basin has ceased to contribute to the reproduction of cod (Hinrichsen et al. 2016). These definitions were applied in the HOLAS II project (HELCOM 2018a) based on approval by all HELCOM Contracting Parties in a review process (there referred to as ‘occasional successful spawning’ and ‘successful spawning’). Following HELCOM (2018b) additional potential spawning areas were identified by environmental thresholds for egg development and survival based on salinity and oxygen conditions (Hinrichsen et al. 2016) during 2011-2016. Separate thresholds were used for Eastern Baltic, Western Baltic and Kattegat cod. Areas denoted “high probability spawning areas” correspond to where the initial delineations (Hüssy 2011, Bagge et al. 1994) achieve the environmental threshold values. Stocks: Kattegat cod: ICES subdivision 21, Western Baltic cod: ICES subdivisions 22-24 Eastern Baltic cod: ICES subdivisions 24 + 25-32 EFH type: Potential spawning areas Approach: Literature review combined with identification of environmental window for spawning based on: salinity and oxygen for Eastern Baltic cod, and on: salinity and depth for Western Baltic Cod and Kattegat cod Variables and thresholds: Eastern Baltic cod: Salinity > 11, Oxygen > 1.5 ml/L (annual average) Western Baltic cod and Kattegat cod: Salinity > 18, Depth >20 m Quality: The Arkona deep is functional for spawning of both the Eastern and the Western Baltic cod and in effect, the definition of the Arcona Basin as a high probability areas in the Arkona basin reflect the result for Eastern Baltic cod. The effective distribution of cod spawning areas is highly dependent on the prevailing hydrological regime, and the presence of spawning also depends on seasonally variable hydrographical conditions, such as temperature, salinity and oxygen. Seasonal differences lead to a progressive spawning season towards the east, typically starting in Kattegat and the Sound in January/February and ending in July/August in the Bornholm area. Fluctuations in temperature can delay the spawning season up to two months. It is difficult to collect egg samples to verify cod spawning, as cod eggs may drift in deep areas, and instead the level of ichthyoplankton is a main source for estimation of good environmental conditions for cod spawning. Modelling based on ichthyoplankton should be validated by comparison with distribution of running adults, to resolve the potential influence of prevailing current speed. The proposed delineations are also influenced by research on the maturity of adults and histology of gonads. The adult and juvenile cod are distributed far outside of the spawning areas depicted in the map. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References - Bagge, O, F Thurow, E Steffensen, and J Bay (1994) The Baltic cod. Dana 10:1-28 - HELCOM (2018a) State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155 - HELCOM (2018b) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Hüssy, K (2011) Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES Journal of Marine Science 68:1459-1471 - Hüssy, K, HH Hinrichsen, and B Huwer (2012) Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua). ICES Journal of Marine Science, doi:10.1093/icesjms/fss136 - Hinrichsen, HH, A Lehmann, C Petereit, A Nissling, D Ustups, U Bergström, and K. Hüssy (2016) Spawning areas of eastern Baltic cod revisited. Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns. Progress in Oceanography 143:13-25 SwAM (2019). Swedish Agency for Marine and Water Management. Symphony Metadata March 2019.whttps://www.havochvatten.se/download/18.67e0eb431695d86393371d86/1552566811384/bilaga-1-symphony-metadata.zip

  • Categories  

    Essential fish habitat (EFH) map on Potential spawning areas for European flounder was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ European flounder (Platichthys flesus) is a key species in many coastal areas of the Baltic Sea, mainly in the central and southern sub-basins. Adults feed in shallow, coastal areas during summer and move out to deeper areas in winter, where the spawning takes place in spring. European flounder spawns above the sea floor in deep water, in areas with sufficiently high salinity for fertilization and pelagic egg development. ‘Potential spawning areas’ were initially delineated by a species distribution model (Orio et al. 2017) developed based on years 1993-1997 to consider a period with relatively better oxygen conditions, but applied with more recent data (2011-2014). The area was further delineated to encompass only areas deeper than 30 m in order to represent pelagic spawning habitat. ‘High probability spawning areas’ were identified as the sub-section encompassing salinity > 10. It should be noted that flounders in the Baltic Sea were recently separated into two species, and that spawning areas of the Baltic flounder (Platichthys solemdali) are described separately. The two data layers do not overlap and can be combined to obtain a map on spawning areas for both flounder species taken together. Stock: ICES identifies two stocks of European flounder in the Baltic Sea: ICES subdivisions 22-23 (Belt Sea and the Sound), and 24-25 (West of Bornholm and Southern Central Baltic Sea). EFH type: Spawning areas Approach: Species distribution modelling combined with identification of environmental salinity window and depth conditions for spawning. Variables and thresholds: Depth > 30 m, Salinity > 10 Quality: The data layer is based on species distribution modelling focusing on mature flounder at the spawning stage and should be considered a rough estimation. The data layers on environmental variables are based on modelling. Other variables than those tested in the model may also be influential. The studies from which the thresholds values for environmental variables have been obtained are based on publications conducted before the separation of Baltic flounder from European flounder but have taken the specific characteristics of the separate spawning ecotypes into account. Note: the map on European flounder spawning areas is currently missing information for the western Baltic Sea including the Kattegat. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References: - Momigliano, P, GP Denys, H Jokinen, and J Merilä (2018) Platichthys solemdali sp. nov. (Actinopterygii, Pleuronectiformes): a new flounder species from the Baltic Sea. Frontiers in Marine Science 5:225 - Nissling, A, L Westin, and O Hjerne (2002) Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Pleuronectes flesus), in the brackish water Baltic Sea. ICES Journal of Marine Science 59:93-108 - Orio, A, U Bergström, M Casini, M Erlandsson, R Eschbaum, K Hüssy, A Lehmann, L Ložys, D Ustups, and A-B Florin (2017a) Characterizing and predicting the distribution of Baltic Sea flounder (Platichthys flesus) during the spawning season. Journal of Sea Research 126:46-55 - Seifert, T, F Tauber, and B Kayser (2001) A high resolution spherical grid topography of the Baltic Sea -2nd edition. Baltic sea Science Congress, Stockholm 25-29 November 2001, Poster #147