Keyword

fluorometers

33 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 33
  • MARLEY (Monitoring deep-seA coRaL EcosYstems) is a deep seafloor observing system dedicated to the monitoring of cold-water coral habitats. The system is deployed in the Lampaul canyon off Brittany, France since August 2021 and maintained each year during the ChEReef-Obs cruises. The study site is a coral garden dominated by Madrepora oculata, located on a sedimented platform at 780 m depth. MARLEY is equipped with a CTD SBE 37-SIP, an oxygen optode Aanderaa (4330 or 4831), an ADCP Teledyne RDI Workhorse 300kHz, a turbidity sensor Wetlabs ECO NTU (sensitivity: 0-1000 NTU), a sediment trap Technicap PPS 4/3 – 24 bottles and a camera module. The camera module, which can be moved from up to 30 m from the main station, is equipped with a camera AXIS Q1786, two flash lights and a fluorometer & scattering meter SEA-BIRD ECO FLNTU. All sensors are controlled and synchronised by the Communication and Storage Front-end - 2nd generation (COSTOF2), which is also managing data storage. Optical sensors are protected from fouling by electrochlorination (20 seconds, each 6 hours). The oxygen optode is calibrated each year prior to deployment. These datasets provide raw data from the oxygen optode Aandera 4831, the CTD Seabird SBE37, the Wetlabs ECO NTU and the SEAR-BIRD ECO FLNTU covering the period 28/08/2021 to 19/01/2022, with a frequency of 15 minutes. Data from Wetlabs ECO NTU include raw counts and Nephelometric Turbidity Unit (NTU) derived from manufacturer’s calibration with Scale Factor = 0.0611 and Dark Counts = 50. Data form SEABIRD ECO FLNTU include raw counts at 695 nm (Chlorophyll) and 700 nm (Turbidity). Chlorophyll concentration (µg/l) is derived from manufacturer’s calibration with Scale Factor = 0.0180 and Dark Counts = 48. Nephelometric Turbidity Unit (NTU) is derived from manufacturer’s calibration with Scale Factor = 0.0481 and Dark Counts = 50. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in the Baffin Bay, Canadian arctic. Here, we describe the data set obtained during the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska and data evaluation with discrete water and underway samples suggest near ‘weather quality’ CO2 data as defined by the Global Ocean Acidification Network. This data set describes one such data set from the CO2 Seaglider, in February of 2023. Please see publication by the same authors at https://doi.org/10.5194/egusphere-2024-1055. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska and data evaluation with discrete water and underway samples suggest near ‘weather quality’ CO2 data as defined by the Global Ocean Acidification Network. This data set describes one such data set from the CO2 Seaglider, in May of 2022. Please see publication by the same authors at https://doi.org/10.5194/egusphere-2024-1055. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The SCENES monitoring station is part of the SNO COAST-HF national network (ILICO-RI), and the regional PHRESQUES observation network. The station includes i) a surface buoy equipped with a CTD and an optical turbidity and fluorescence sensor measuring approximately 1.5m below surface and ii) a benthic station equipped with an optical turbidity sensor and an up-looking ADCP (before Oct. 2017 – optical sensor ~ 1.4m above the bed, after Oct. 2017 : 0.5m above the bed). Due to technical problems, the time series, for all sensors, is discontinuous. Optical turbidity measurements can be transformed in suspended particulate matter concentration (SPMC, in g/l) using a calibration relationship built from the PHRESQUES field campaigns (SPMC=0.00156*NTU+0.001). The acoustic backscatter signal was processed to retrieve SPMC values using optical turbidity sensors and observations from the PHRESQUES Field campaigns.  This dataset allows to investigate hydrodynamics and sediment dynamics from the tidal scale to the seasonal and interannual scale from water level, current velocity, salinity, temperature and SPM concentration measurements. Please refer to associated publications. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • As part of the second mission of the (GOCART)-[https://projects.noc.ac.uk/gocart/] (Gauging Ocean organic Carbon fluxes using Autonomous Robotic Technologies) project, funded by the European Research Council, a Slocum glider (unit-405, Doombar) spent about 4 months surveying the top 1000m of a low oxygen region of the Northern Benguela Upwelling region, off the coast of Namibia. The goal of the mission was to characterize the temporal variability in organic carbon flux and remineralisation depth during the spring bloom in a highly productive but low oxygen region in the Benguela Current, off the Namibian coast. The glider was a Teledyne Webb Research (Slocum)-[https://www.teledynemarine.com/brands/webb-research/slocum-glider] G2, equipped with: Seabird Glider Payload CTD (pumped), measuring temperature, conductivity and pressure Sea-Bird WETLabs ECO Puck Triplet BB2FL-SLC scattering fluorescence sensor, measuring chlorophyll fluorescence and optical backscattering at 700 and 532nm Aanderaa 4831 oxygen optode, measuring dissolved oxygen concentration. The glider was deployed at 11.225°E, 19.331°S on 14th February 2018 from the RV Mirabilis, the vessel of the Namibian Ministry of Fisheries, during the second leg of the 2018 Hake Survey off the northern Namibian shelf and recovered on June 19th, 2018 during the (DY090 cruise)-[https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/16386/] on board RSS Discovery, during the COMICS cruise (Controls over Oceanic Mesopelagic Interior Carbon Storage), funded by the Natural Environmental Research Council. The latter cruise was in the vicinity of the glider from 1st-19th June, 2018. To validate/calibrate the glider sensors, we conducted several targeted casts (where gliders and ships started profiles simultaneously) and non-targeted casts (unplanned matchups where gliders and ships CTD-profiles were within an acceptable range of each other). Bottle samples were collected on all ship CTD profiles. For calibration purposes, we evaluated and determined that casts within 5 km and 12 hours of each other were considered glider ship matchups. These matchups exhibited strong correlation (linear regression r^2 = 0.95).Variables calibrated were salinity, chlorophyll concentration and oxygen concentration. Doombar’s mission was slightly modified 3 times during the 4-month deployment: 1 – Sampling around a 12 km triangle at BN0 (centred at 10.80°E, 18.25°S) from 19/02/2018-27/03/2018: Once the glider reached the site (BN0), it was tasked to survey a triangle with 12 km side, centred at that location. The location of the triangle was chosen based on low currents to help constrain advective processes and the predominantly westward surface currents in the region . The 12km sided triangle was chosen based on the time it took the glider to do a complete circuit, aiming for the glider to take around 1.5 days around the triangle. 2 – Sampling around a 12 km triangle at BN (centred at 10.95°E, 18.05°S) from 27/03/2018-08/06/2018: Given that the mission was to survey a low oxygen region, and oxygen concentrations monitored by the glider weren’t consistently low, on March 26th the glider was re-tasked to establish a new triangle (BN) centred at 10.95°E, 18.05°S, Northeast of the initial sampling site, where lower oxygen concentrations were expected. 3 – Station-keeping (“virtual-mooring”) 1.5km North of BN from 08/06/2018-19/06/2018: Throughout its deployment, Doombar gradually reduced its forward speed from about 4km per 1000m dive to about 1.5km. This meant that the glider could no longer cover the triangle in less than 2 days. So, while the ship was in the vicinity, Doombar was assigned a station keeping mission 1.5 km from the cruise main station, to not only avoid the risk of hitting the glider, but also so that any ship data could contribute to validating glider sensor data. Further information on sensor validation can be found in the netcdf file as well as documented in (Lovecchio et al, 2022)-[https://doi.org/10.1029/2022JC019063]. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Two quality controlled datasets here archived were collected during the oceanographic cruise MEIO that held in October-November 2022 over the South Western Indian Ocean, onboard S.A. Agulhas II. The first dataset is composed of continuous vertical profiles of the 12 oceanographic stations. The profiles have a resolution of 1dbar. The parameters reported in this data set are: pressure (in dbar), in-situ temperature (in °C), practical salinity, dissolved oxygen concentration (in µmol/kg), fluorescence of calibrated chlorophyll-a fluorescence (in µg/L), nitrate concentration (in µmol/kg) and particle attenuation @660nm (in 1/m). The second dataset is composed of discrete samples collected during the 12 stations. The parameters are the sensors measurements of every samples, dissolved oxygen concentration measured by the Winkler method (in µmol/kg), practical salinity measured by Autosal, concentration of silicate (in µmol/kg), concentration of phosphate (in µmol/kg) , concentration of nitrite (in µmol/kg), concentration of nitrate (in µmol/kg), concentration of pigments (processed by HPLC). These datasets aim to contribute to the extension of the One-Argo programme in the southwestern area of the Indian Ocean through the deployment of a significant number of floats; and to collect reference measurements through a multi-instrumented CTD rosette, allowing in particular to calibrate the robots’ sensors, just before their deployment. The two datasets were collected in concomitancy with the deployment of 29 One-Argo floats (WMO numbers : 5906536, 6903149, 4902620, 6903088, 6903148, 6990505, 5906970, 7901013, 4902626, 6903150, 5906972, 6903031, 5906540, 5906969, 4902623, 6990503, 3902471, 5906539, 6990504, 1902572, 5906537, 4902628, 7901003, 3902472, 6903033, 5906538, 1902573, 6903084, 5906971). Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The two platforms IAOOS 23 and IAOOS 24 were deployed within 600 m from each other at the North Pole from the Russia-operated Barneo ice camp on April 12, 2017. They followed a meandering trajectory, reaching as far as 30°E in the Nansen Basin, before turning back to the western Fram Strait. On both IAOOS 23 and 24, the ocean profiler was a PROVOR SPI (from French manufacturer NKE) equipped with a Seabird SBE41 CTD (Conductivity, Temperature, Depth) and a dissolved oxygen (DO) Aandera 4330 optode. For the first time, the profiler on IAOOS 23 also carried biogeochemical sensors. It featured a bio-optics sensor suite and a submersible ultraviolet nitrate analyzer (SUNA, Satlantic-Seabird Inc.). The bio-optics sensor suite (called Pack Rem A) combines a three-optical-sensor instrument (ECO Triplet, WET Labs Inc.) and a multispectral radiometer (OCR-504, Satlantic Inc.). The present dataset is composed of CTD-DO data from IAOOS 23 and 24, corrected from the thermal lag and the sensor lag, despiked and interpolated vertically every 0.5 m. It also comprises nitrate concentrations from the SUNA and CDOM fluorescence from the WETLabs ECO sensor on IAOOS 23. Other biogeochemical data will be added to this dataset. The profilers were set to perform two upward profiles a day from 250 m (IAOOS 23) and 350 m (IAOOS 24) upward starting at approximately 6 am and 6 pm. They provided a unique 8-month long dataset, gathering a total of 793 profiles of the temperature, salinity and oxygen (upper 350m) and 427 profiles of CDOM and nitrates concentrations (upper 250m).   Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Data related to the article: Shelf Water Export at the Brazil-Malvinas Confluence Evidenced From Combined In-situ and Satellite Observations. By Gaston Manta, Sabrina Speich, Marcelo Barreiro, Romina Trinchin, Camila de Mello, Remi Laxenaire and Alberto R. Piola. Oceanographic dataset of CTD, TSG, and ADCP campaign in Uruguay during April-May 2016 (see the paper). CTD_Manta_etal_2022.nc contains the 82 CTD profiles There are matrices of 4219 * 82. 4219 is the maximum pressure reached by a station. The rest is filled with NaNs. TSG_Manta_etal_2022.csv is the TSG data with a 10 minute centered moving average and a coarse calibration of the fluorometer (see the paper). ADCP_Manta_etal_2022.nc are u and v velocities from the hull-mounted ADCP, matrices of depth (50)x time(18500) processed with cascade and tide corrected. Water_samples_Manta_etal_2022.csv Contains nutrients and chlorophyll-a at 5m depth. (Time is always in MatLab datenum format and in year-month-day-hour-minute-second) You can find more details about the data in the paper and also here http://data.utm.csic.es/geonetwork/srv/eng/catalog.search#/metadata/urn:SDN:CSR:LOCAL:29SG20160408 Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The East Sea Real-time Ocean Buoy (ESROB) is a surface mooring that has been in operation off the mid-east coast of Korea since 1999. The ESROB is 9 km off the coast (37° 32.24’N; 129° 12.92’E) in a water depth of 130 m, and provides meteorological and oceanographic (physical and biogeochemical) data every 10 min from Conductivity-Temperature-Depth (CTD) and acoustic Doppler current profiler (ADCP) instruments. The data provided here were collected between 2016 and 2020 and follow the data collected by previous publications. The data were quality controlled and assured using typical data processing methods, and have been used to address temporal variations in currents and water properties, as well as wind-and tide-induced internal waves. The uploaded data files contain variables in a NetCDF format that were obtained during each deployment. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.