Keyword

Network Common Data Form

182 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 182
  • Elephant Seals Data - Valdes peninsula in October 2021 from the NAUTILOS project (www.nautilos-h2020.eu)

  • The MOOSE-GE cruises aim to provide an annual summer snapshot of the North-Western Mediterranean Sea basin, to observe changes in water mass properties, biogeochemical content and changes in planktonic biodiversity (https://doi.org/10.18142/235). These cruises are part of the national MOOSE program (Mediterranean Ocean Observing System for the Environment) funded by CNRS-INSU and the Research Infrastructure ILICO (French Ministry). Since 2012, lowered and ship ADCP data were collected during MOOSE-GE cruises. This data set contains quality controlled data of horizontal currents measured by ship and lowered ADCPs. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Physical data associated with the AMAZOMIX cruise. The Amazon shelf encompasses a variety of physical processes, such as fluvial inputs, coastal currents, mesoscale, filaments, tides, internal waves and upwelling, influencing nutrient concentrations, chlorophyll and suspended matter. They also affect energy, salt and heat balances; parameters that condition physical/biogeochemical interactions and ecosystem functioning, from bacteria to plankton to fish resources. In particular, internal tidal waves are very energetic in this region. They impact biogeochemical cycles via the vertical mixture induced by their dissipation or vertical movements induced by their propagation. They thus allow a significant input of nutriments into the euphotic layer enhancing primary production, as observed on the surface from watercolour data. Internal tidal waves could thus influence the biological pump and the carbon cycle. In addition, overall marine biodiversity of the region, from bacteria to fish is not well described. The connectivity of species in the tropical Atlantic is also still an open question. The Caribbean region is by far more bio-diverse than the Brazilian one. One of the hypotheses is that the Amazon plume, which can extend up to 3,000 km off the mouth, would constitute a barrier for some organisms. The Amazon Shelf is thus an ideal experimental laboratory to study the impact of physical processes on the structure and function of neritic and oceanic marine ecosystems. In this context, the objective of the multidisciplinary AMAZOMIX survey was to study the impact of the Amazon River plume, internal tides and associated turbulent mixing, on marine ecosystem in contrasting regions off the Amazon shelf. For that purpose, the multidisciplinary AMAZOMIX project brings together physicists, biogeochemists, bioopticians and biologists. The sampling strategy consists in the simultaneous acquisition of a comprehensive set of environmental and biological compartments, including micro-organisms (bacteria, phyto and zooplankton) and higher trophic levels (micronekton, demersal and pelagic fish). AMAZOMIX is the first campaign to develop this multi-disciplinary approach off the Amazon shelf. In situ results will be analysed in interaction with digital tools and data, modelling (1/36°, with and without tides, 1/12° coupled) and satellite data analyses. This dataset contains the AMAZOMIX 2021 qualified measurements of  - The hydrographic CTD-02 (netCDF and csv text files) - Ship Acoustic Doppler Current Profilers (OS 75 kHz, netCDF and csv text files) - Lowered Acoustic Doppler Current Profilers (WH300 downlooking and WH300 uplooking, netCDF and csv text files) - Thermosalinometer (netCDF and csv text files) - Vertical microstructure profile (VMP-250, binary file)   Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Zonal and meridional velocities each 4 m in the vertical from upward-looking ADCPs with a 30 minutes temporal resolution measured in two locations of the Argentine continental shelf along 44.7°S from 2015 to 2017 (several papers under review) Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Sea water temperature from an ADCP at the Munkholmen buoy in the Trondheim fjord

  • The dataset includes continuous velocity, direction, and depth measurements in 9 fixed locations (3x3 grid) in the Gulf of Riga, Baltic Sea. It is a space-time-aligned dataset of continuous velocity, direction, and depth measurements near Skulte, the Gulf of Riga, Baltic Sea (Eelsalu et al. 2025, Proceedings of the Estonian Academy of Sciences). All sensors measured 0.4m from the bottom of the sea. The measurements are done using a Hall effect sensor-based velocity profiler called Hydromast (Egerer et al. 2024, IEEE sensors). The minimum velocity provided in this dataset is 0.12m/s, validated with ADV. If the velocity is under this threshold, the velocity and direction read NaN. The depth and temperature measurements are valid at all times.

  • Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope from February, 2018, to January, 2019, to investigate the water properties of the bottom water exiting the region at Cape Adare and the relationship with the seasonal cycle, winds, and tides. Mooring P2 was placed at 1750 metres depth on the slope at Cape Adare at the same location as an earlier deployment of mooring CA1 in the CALM experiment (Gordon et al., 2015). Instruments on P2 were placed at the same depths as CA1 to continue that time series. Mooring P3 was placed on the same isobath on the slope at the mouth of the Drygalski Trough to measure the water properties moving along the slope from the east. Findings from the observations are described in Bowen et al. (2021). Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Deep water formed around the Antarctic continent drives the world ocean circulation. More than 50% of this deep water is formed within only about 10% of the Antarctic circumpolar band: the Weddell Sea. Subtle changes in the circulation of the Weddell Sea can lead to major changes in floating ice shelves, with critical implications for global sea-level, the production of deep water, and the global ocean overturning circulation. The Filchner Trough on the continental shelf in the southern Weddell Sea plays an important role for the water mass exchange between the cold water on the continental shelf and the warm water off the continental shelf: It serves as a conduit for relatively warm water to flow southward across the continental shelf toward the Filchner Ronne Ice shelf and for the dense, cold water produced underneath the ice shelf to flow northward off the continental shelf to feed Antarctic Bottom Water. Four moorings (P1, P2, P4, P5) were places within the inflow pathway of the warm water at the northern entrance to the Filchner Trough on the continental shelf, and one mooring (P6) was placed off the continental shelf over the deep ocean. The mooring time series cover the period from February 2017 to March 2021 and are used to investigate the processes controlling the on-shore transport of relatively warm water onto the shelf toward the ice shelf and the interaction of the warm water with the cold dense water. The moorings provide observations of the circulation on the continental shelf and the temperature variability on small (tidal) to large (seasonal, interannual) time scales. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • EC1 is a subsurface mooring that has been deployed in the Ulleung Interplain Gap (UIG) since 1996. The UIG is the only deep channel connecting the northern Japan Basin and the southwestern Ulleung Basin in the East Sea (Japan Sea). The EC1 provides continuous time series data at depths ranging from 150 to 2,250 meters, enabling scientific research on circulation and water properties. It equips current-meter, conductivity, temperature, pressure, and dissolved oxygen sensors. The EC1 mooring was recovered 3 times (26 times total) and redeployed 3 times (26 times total) from November 2020 to April 2023 (since 1996), with a typical turnover time of 1 year. The equipment has been upgraded since 1996 to continuously measure temperature, pressure, conductivity, dissolved oxygen, and the speed and direction of three-dimensional current, as well as to collect more and better time series data. The sampling intervals of all sensors are equal to or less than 60 minutes. The temperature, pressure, conductivity, and dissolved oxygen data collected from November 2020 to April 2023 were quality-assured and quality-controlled with typical procedures such as global and local range tests, spike tests, and gradient tests. The magnetic declination of 9 degrees west was applied to the current data for compass calibration.   Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • This dataset consists of a glider deployment in greater Te Moana-o-Raukawa (Cook Strait) as part of the DeepSouth National Science Challenge in Aotearoa New Zealand. This submission continues from previous deployments uploaded to SEANOE (doi:10.17882/76530). Survey uses a Teledyne Webb Research Slocum G2 glider equipped with a pumped SeaBird CTD to measure conductivity, temperature, and pressure, along with instruments to measure dissolved oxygen, chlorophyll-a fluorescence, backscatter at 470, 532, 660, and 700nm, chromophoric dissolved organic matter (CDOM), and photosynthetically active radiation (PAR). Part-way through the deployment, in order to save battery, the science package was turned on only during downcasts and these subsequently appear as empty casts in the dataset. Science data were processed using the GEOMAR Glider Toolbox (https://git.geomar.de/open-source/geomar_glider_toolbox). Comparison with the previously-utilized SOCIB (Troupin et al. (2015), doi: 10.1016/j.mio.2016.01.001) toolbox shows negligible differences in outputs. Data have been averaged into vertical bins of 1dBar (~1m). Despite processing to minimize lag-error in salinity (following Garau et al., 2011, doi: 10.1175/JTECH-D-10-0503.1), some casts (n=10, out of 4246 total) were made empty after visual inspection in T-S space. Oxygen data were lag-corrected, whereas other variables are presented as-is without further processing. Depth-integrated water velocity derived from GPS and dead-reckoning are included. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.