current meters
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
-
Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope from February, 2018, to January, 2019, to investigate the water properties of the bottom water exiting the region at Cape Adare and the relationship with the seasonal cycle, winds, and tides. Mooring P2 was placed at 1750 metres depth on the slope at Cape Adare at the same location as an earlier deployment of mooring CA1 in the CALM experiment (Gordon et al., 2015). Instruments on P2 were placed at the same depths as CA1 to continue that time series. Mooring P3 was placed on the same isobath on the slope at the mouth of the Drygalski Trough to measure the water properties moving along the slope from the east. Findings from the observations are described in Bowen et al. (2021). Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Deep water formed around the Antarctic continent drives the world ocean circulation. More than 50% of this deep water is formed within only about 10% of the Antarctic circumpolar band: the Weddell Sea. Subtle changes in the circulation of the Weddell Sea can lead to major changes in floating ice shelves, with critical implications for global sea-level, the production of deep water, and the global ocean overturning circulation. The Filchner Trough on the continental shelf in the southern Weddell Sea plays an important role for the water mass exchange between the cold water on the continental shelf and the warm water off the continental shelf: It serves as a conduit for relatively warm water to flow southward across the continental shelf toward the Filchner Ronne Ice shelf and for the dense, cold water produced underneath the ice shelf to flow northward off the continental shelf to feed Antarctic Bottom Water. Four moorings (P1, P2, P4, P5) were places within the inflow pathway of the warm water at the northern entrance to the Filchner Trough on the continental shelf, and one mooring (P6) was placed off the continental shelf over the deep ocean. The mooring time series cover the period from February 2017 to March 2021 and are used to investigate the processes controlling the on-shore transport of relatively warm water onto the shelf toward the ice shelf and the interaction of the warm water with the cold dense water. The moorings provide observations of the circulation on the continental shelf and the temperature variability on small (tidal) to large (seasonal, interannual) time scales. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
EC1 is a subsurface mooring that has been deployed in the Ulleung Interplain Gap (UIG) since 1996. The UIG is the only deep channel connecting the northern Japan Basin and the southwestern Ulleung Basin in the East Sea (Japan Sea). The EC1 provides continuous time series data at depths ranging from 150 to 2,250 meters, enabling scientific research on circulation and water properties. It equips current-meter, conductivity, temperature, pressure, and dissolved oxygen sensors. The EC1 mooring was recovered 3 times (26 times total) and redeployed 3 times (26 times total) from November 2020 to April 2023 (since 1996), with a typical turnover time of 1 year. The equipment has been upgraded since 1996 to continuously measure temperature, pressure, conductivity, dissolved oxygen, and the speed and direction of three-dimensional current, as well as to collect more and better time series data. The sampling intervals of all sensors are equal to or less than 60 minutes. The temperature, pressure, conductivity, and dissolved oxygen data collected from November 2020 to April 2023 were quality-assured and quality-controlled with typical procedures such as global and local range tests, spike tests, and gradient tests. The magnetic declination of 9 degrees west was applied to the current data for compass calibration. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between Auguest 2018 and June 2019 using 3 TCM3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in file Sensor Metadata. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between june 2021 and June 2022 using 5 TCM-3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 6 TCM-3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in the (metadata file)-[https://www.seanoe.org/data/00800/91238/data/97068.pdf]. Data are provided for each deployed instrument as two text files: current data temperature data Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between july 2019 and June 2021 using 6 TCM-3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 6 TCM-3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in the metadata file. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset contains current data acquired between July 2017 and August 2018 using 3 TCM3 Ocean Bottom Tilt Current Meters installed next to the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. The TCM-3 Ocean Bottom Tilt Current Meter from Lowell Instruments LLC (North Falmouth, MA, USA) measures current using the drag-tilt principle. The logger is buoyant and is anchored to the bottom via a short flexible tether. Drag from moving water tilts the logger in the direction of flow. The logger’s accelerometer and magnetometer channels are used to record the amount of tilt and direction of tilt (compass bearing). The array comprises 3 currentmeters, deployed near the Tour Eiffel, Montségur and Crystal hydrothermal vent sites. It is not connected to an energy node. The currentmeter's internal clocks are set to UTC time before deployment. Clock drift after recovery is not implemented in data but added as metadata in Table_TCM3EMSO_Azores 2016-2018. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Mooring data at Yermak Pass from September 2017 to July 2020 : raw and 50 hr high pass filtered data
The mooring was deployed on 15 September 2017 from Norwegian Research Vessel Lance at 80.6°N and 7.26°E (depth of 730 m) in the Yermak Pass over the Yermak Plateau north of Svalbard. It comprised 3 instruments: an upward-looking RDI 75kHz, a Long Ranger Acoustic Doppler Current Profiler (ADCP) at 340 m with 16 m vertical resolution (25 bins of 16 m each) and a 2-hour sampling time; a Seabird SBE37 measuring temperature, salinity and pressure at 348 m with 10-minute sampling time; and an Aquadopp current meter at 645 m with a 2-hour sampling time. The mooring was retrieved on the 19 July 2020 by Norwegian Icebreaker K.V. Svalbard. The present dataset features: The ADCP 50-hour high pass filtered velocities and the Aquadopp 50-hour high pass filtered velocities. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Field trips have been conducted from February 2019 to May 2020 in Poe lagoon (South Province - New Caledonia) to characterize its hydrodynamic processes and functionning. This shallow lagoon belongs to a wider area which has been registered at the UNESCO World Natural Heritage list in 2008 and has experienced recently beaching of seaweed (ulva sp.). A dedicated project (ELADE) has been launched to investigate paths of enrichment of this lagoon. This dataset belongs to the Hydrodynamics Task of this multidisciplinary project. Several moorings (~ 15) have been placed for observations of currents, temperature, pressure and salinity dynamics during 2 legs (Feb. to May 2019 ; July-August 2019). During this field period, one major atmospheric event happened in February 2019 : OMA cyclone. From september 2019 to may 2020, a single station (temperature, salinity, pressure) has been kept in the area of maximum ulva biomass. Sampling strategy avalaible on (Sextant - Marine Geographic Information System)-[https://sextant.ifremer.fr/record/5d2e6d07-6b8d-4c01-8cb3-41d8ef4a6518/]. More information on (PRESENCE project)-[https://wwz.ifremer.fr/nouvelle_caledonie/Recherches-expertises/Vulnerabilite-des-ecosystemes-recifo-lagonaires]. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
The mooring was deployed on 15 September 2017 from Norwegian Research Vessel Lance at 80.6°N and 7.26°E (depth of 730 m) in the Yermak Pass over the Yermak Plateau north of Svalbard. It comprised 3 instruments: an upward-looking RDI 75kHz, a Long Ranger Acoustic Doppler Current Profiler (ADCP) at 340 m with 16 m vertical resolution (25 bins of 16 m each) and a 2-hour sampling time; a Seabird SBE37 measuring temperature, salinity and pressure at 348 m with 10-minute sampling time; and an Aquadopp current meter at 645 m with a 2-hour sampling time. The mooring was retrieved on the 19 July 2020 by Norwegian Icebreaker K.V. Svalbard. The present dataset features: (i) the ADCP 50-hour smoothed daily velocities, conservative temperature and pressure time series interpolated every 10 meters within the 20-330m layer, (ii) the Aquadopp 50-hour smoothed daily velocities and pressure time series at 645 m; and (iii) the SBE37 50-hour smoothed daily conservative temperature, absolute salinity and pressure time series at 348 m. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.